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Abstract. Many scienti�c problems can be represented as computa-
tional work
ows of operations that access remote data, integrate het-
erogeneous data, and analyze and derive new data. Even when the data
access and processing operations are implemented as web or grid ser-
vices, work
ows are often constructed manually in languages such as
BPEL. Adding semantic descriptions of the services enables automatic
or mixed-initiative composition. In most previous work, these descrip-
tions consists of semantic types for inputs and outputs of services or a
type for the service as a whole. While this is certainly useful, we argue
that is not enough to model and construct complex data work
ows.
We present a planning approach to automatically constructing data pro-
cessing work
ows where the inputs and outputs of services are relational
descriptions in an expressive logic. Our work
ow planner uses relational
subsumption to connect the output of a service with the input of another.
This modeling style has the advantage that adaptor services, so-called
shims, can be automatically inserted into the work
ow where necessary.

1 Introduction

Much of the work of scientists, economists, and engineers is consumed by ac-
cessing, integrating, and analyzing data. Recently, there has been a signi�cant
e�ort to support computational work
ows in �elds such as physics (e.g., [11,
6]) and bioinformatics (e.g. [5, 22]). This research leverages domain ontologies to
facilitate work
ow construction, usually by de�ning the work
ow components
as semantic web services. Such semantic descriptions are of two kinds: (1) the
service as a whole is classi�ed according to an ontology of service types (e.g., [21,
11]), or (2) the inputs and outputs of services are typed with concepts de�ned in
a domain ontology (e.g. [5, 16, 11, 20]). Though useful for service discovery, these
approaches do not describe the data manipulated by the service in su�cient
detail. First, the inputs and outputs of a service are usually related, so that a
service is better described as having relational inputs and outputs instead of a
list of apparently independent single-type inputs or outputs. In data-intensive
applications tabular data is the norm, so services that process such data must
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consume and produce tables natively. Second, having relational descriptions of
the services' inputs and outputs allows our planner to automatically introduce
adaptor services, so-called shims [10], that transform the output of one service
to the input of another. In this paper, we present the Argos framework to (1)
describe data processing services and (2) automatically generate new data on
demand by automatically composing data processing work
ows.

We have applied the Argos approach to a transportation modeling domain [7,
2], which we use as an example to ground the discussion. However, our approach
is general and can be applied to produce data processing work
ows in any other
domain, as long as the data and operations are described in an suitable ontology.

As an example consider Figure 1(a) that shows an abstract work
ow that
computes truck tra�c in the highways of the Los Angeles Consolidated Statis-
tical Metropolitan Area (LACMSA). The work
ow estimates the intra-regional

trade based on employment data and an input-output transaction model of the
local economy (provided by the Southern California Association of Governments
{ SCAG), resulting in a table of attractions and productions of di�erent commod-
ity sectors for each tra�c analysis zone (TAZ) within the region.1 To estimate
the inter-regional trade, the model uses a variety of data sources, including data
from the Commodity Flow Survey (CFS) of the US Census Bureau, the Wa-
terborne Commerce of the United States (WCUS), and airport statistics from
RAND. The inter-regional attractions and productions per commodity are as-
signed to the TAZs of the entry/exit points in the region. For example, airborne
imports of computer equipment are assigned to the TAZs corresponding to the
airports in the region. The intra- and inter-regional attractions and productions
are converted to an Origin-Destination matrix between pairs of TAZs using a
gravity model. Finally, a network equilibrium algorithm assigns the freight 
ow
to speci�c highway links. Figure 1(c) shows graphically the �nal result of the
work
ow: the 
ow of freight in the LACMSA highway network.

There are many challenges in producing data processing work
ows such as
the transportation model described above. Since the data comes from a vari-
ety of sources, it may be expressed in di�erent schemas, formats, and units.
Therefore, the work
ow needs to perform di�erent types of data conversion, for
example, to translate between di�erent units (e.g., from tons to dollars to jobs
to container units to passenger-car-equivalents), or to translate economic data
described in one industry/sector classi�cation to another (e.g., from the North
American Industry Classi�cation System { NAICS { to the Standard Classi�ca-
tion of Transported Goods { SCTG {, or from the NAICS 1997 version of the
standard to the NAICS 2002 version).

The work
ow of Figure 1(a) abstracts many details. The full work
ow, whose
structure appears in Figure 1(b), contains over 50 data access and data process-
ing operations. This estimation model was originally implemented by a combina-
tion of manual steps and custom-designed programs. Our approach automatically

1 A TAZ is a spatial region consisting of several census blocks. The LACMSA is
partitioned into 3165 TAZs.
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Fig. 1. Estimating Truck Tra�c in the Los Angeles Highway Network

generates such a data processing work
ow in response to a user data request,
including all the necessary data integration and translation operations.

The remainder of the paper is structured as follows. First, we describe the
domain ontology and the data representation. Second, we present our work
ow
planning algorithm that uses both domain-dependent and domain-independent
services. Third, we provide a empirical evaluation. Fourth, we compare with
related work. Finally, we discuss our contributions and plans for future work.

2 Domain and Data Modeling

One of the major challenges to automating computational work
ows is under-
standing source data, and data consumed or produced by services. To provide a
clear understanding of the semantics of the data, we describe the data according
to an ontology of the application domain.
Domain Ontology. We represent the domain ontology in the �rst-order logic
language of the PowerLoom system [14, 18]. PowerLoom is the more expressive
successor of the Loom [13] description logic. PowerLoom is specially optimized to
compute both concept and relation subsumption. First-order logical inference is
undecidable, hence PowerLoom is incomplete. Nevertheless, in our experience we
have de�ned an expressive domain ontology and PowerLoom proves the required
inferences e�ciently. However, the techniques we present in this paper rely only
on relational subsumption, i.e., query containment, so any other knowledge rep-
resentation formalism from relational conjunctive queries [8] to description logics
such as DLR [9] could be applied.

Sample concept, instance, rule and constraint de�nitions of our transporta-
tion modeling ontology appear in Figure 2. The Flow concept represents a trans-
fer of a product between two geospatial areas using a transportation mode mea-
sured during a particular time interval. For example, an instance of Flow is the



domestic exports by air (a TransportationMode) of Pharmaceutical products
from LACMSA in 2000, which amounts to (hasValue) 2226 million US dollars.
The ontology also encodes information about well-known entities in the domain.
For example, Figure 2(b) shows the fact that Los Angeles County (g-LA) is geo-
graphically contained in (is a geoPartOf) the LACMSA region (g-LACMSA), as is
Ventura County (g-VT), something not immediately apparent from the LACMSA
name.2 The ontology includes rules de�nitions, such as the recursive rule in Fig-
ure 2(c) that speci�es the transitivity of geospatial containment (geoPartOf),
as well as disjointness constraints, such as the statement in Figure 2(d) that
speci�es that di�erent product classi�cations do not have instances in common.

(defconcept Flow (?x) :<=>
(exists (?o ?d ?p ?t ?u ?m ?v)
(and (Data ?x)

(hasOrigin ?x ?o) (Geo ?o)
(hasDestination ?x ?d) (Geo ?d)
(hasProduct ?x ?p) (Product ?p)
(hasTimeInterval ?x ?t)
(TimeInterval ?t)

(hasUnit ?x ?u) (Unit ?u)
(hasMode ?x ?m)
(TransportationMode ?m)

(hasValue ?x ?v) (Number ?v) )))

(a) Concept Definition

(geoPartOf g-LA g-LACMSA) (USCounty g-LA)
(geoPartOf g-VT g-LACMSA) (USCounty g-VT)
(USGeo g-LACMSA) (TransportationMode tm-air)

(b) Instance Assertions

(forall (?x ?z)
(=> (exists (?y) (and (geoPartOf ?x ?y)

(geoPartOf ?y ?z)))
(geoPartOf ?x ?z)))

(c) Inference Rule

(mutually-disjoint-collection
(setof IMPLAN NAICS SCTG SIC USC USCCOM))

(d) Concept Disjointness Assertion

Fig. 2. Argos Ontology: Sample De�nitions

Relational Data Descriptions. Using this ontology we describe the data pro-
vided by sources, and required or computed by services. In our domain, data are
commonly represented as relational tables. We formally describe the tuples in
such tables by formulas over concepts and relations of the ontology. Essentially,
we associate a Local-as-View [8] de�nition to each source relation and to each
input and output of a data processing operation. For example, Figure 3(a) shows
the description of a source table LACMSA-2000-EMP that provides the number of
jobs in 2000 for each TAZ in the LACMSA for products categorized following the
1999 Standard Industrial Classi�cation (SIC) with a granularity of 4 digits.

In Argos we used factored data descriptions. Instead of considering the body
of a description as a collection of predicates all of equal importance, we group the
predicates into meaningful concepts for the domain, and then use these concepts
as appropriate in the body of the relational de�nitions. For example, Argos uses
the factored de�nitions of Figure 3(b) instead of the direct description of Fig-
ure 3(a). Although the direct and the factored representations are semantically
equivalent, factoring has knowledge engineering and reasoning advantages. From
the knowledge engineering perspective, the concept de�nitions are more modular

2 The LACMSA comprises the counties of Los Angeles, Ventura, San Bernardino,
Riverside and Orange.



(defrelation R-LACMSA-2000-EMP
(?county ?jobs ?product ?taz) :<=>
(exists (?o)
(and (Measurement ?o)
(hasGeo ?o ?taz) (TAZ ?taz)
(geoPartOf ?taz ?county)
(USCounty ?county)
(geoPartOf ?taz g-LACMSA)

(hasProduct ?o ?product)
(Product-SIC-4-1999 ?product)

(hasTimeInterval ?o year2000)
(hasUnit ?o u-NumberOfJobs)
(hasValue ?o ?jobs)(Number ?jobs)))

(a) Direct Definition

(relation-concept-mapping
LACMSA-2000-EMP
Employment-2000-LACMSA-TAZ-SIC))

(c) Bookkeeping

(defrelation LACMSA-2000-EMP
((?county USCounty) (?jobs Number)
(?p Product-SIC-4-1999) (?taz TAZ)) :<=>

(exists (?o)
(and (Employment-2000-LACMSA-TAZ-SIC ?o)
(hasProduct ?o ?p) (hasValue ?o ?jobs)
(hasGeo ?o ?taz) (geoPartOf ?taz ?county))))

(defconcept Emp-2000-LACMSA-TAZ-SIC (?o) :<=>
(exists (?p ?taz ?jobs)
(and (Measurement ?o)
(hasProduct ?o ?p) (Product-SIC-4-1999 ?p)
(hasGeo ?o ?taz) (TAZ ?taz)
(geoPartOf ?taz g-LACMSA)
(hasTimeInterval ?o 2000)
(hasUnit ?o u-NumberOfJobs)
(hasValue ?o ?jobs))))

(b) Factored Definition

Fig. 3. Data Description for the LACMSA-2000-EMP source table

and can be reused in the de�nitions of many data relations. From the reason-
ing perspective, it is more e�cient to compute subsumption between concepts
than between relations (although PowerLoom can compute both). For example,
two relations of the same arity may represent identical semantic information,
but have their arguments in a di�erent order. In order to prove semantic equiv-
alence, our system would need to explore the permutations of the arguments,
which may be expensive. Using the associated concept descriptions, the system
can easily prove concept equivalence �rst and worry about the arguments in a
second phase (cf. Section 3.3). As we describe later, storing the mapping between
the relational description and distinguished concepts in its body (cf. Figure 3(c)),
contributes to more e�cient reasoning during planning.

In our representation we can describe both complete and incomplete data
sources, corresponding respectively, to the closed-world and open-world seman-
tics in data integration systems [8]. De�ning a data source relation as complete

means that it contains all the tuples that satisfy the ontology de�nition. We indi-
cate completeness by using an if-and-only-if de�nition. For example, the relation
de�nition in Figure 3 states that the table contains values for all the products of
type Product-sic-4-1999 for all the TAZs in the LACMSA. Conversely, de�n-
ing a data source relation as incomplete means that although all the tuples in the
source relation satisfy the de�nition, the relation may not contain all possible
such tuples. That is, there may be other sources that contain additional tuples
that satisfy the de�nition. We indicate incompleteness by using an if de�nition.
For example, de�ning the table LACMSA-2000-EMP as incomplete would mean
that there could be tuples missing for some TAZ or some product. In our trans-
portation modeling domain complete descriptions are customary. In this paper
we focus primarily on reasoning with complete descriptions, but our approach
can handle both complete and incomplete data descriptions (see Section 3.1).



3 Automatically Composing Data Processing Work
ows

Argos automatically generates a work
ow that answers user data requests by
composing available sources and data processing operations. We assume that
sources and operations are outside our control. For example, operations may
be web services or functions from third-party libraries. Similarly, sources can
be databases or other web services. We use the terms operation and service
interchangeably. A source is an operation that does not require inputs.

Automatically generating a work
ow presents two main challenges. First,
services may use di�erent schemas. Second, the data produced by a service may
not be input directly into another, but may need some kind of transformation
(shim). Argos addresses both these challenges. First, we resolve the semantic
heterogeneity by describing the data in a common ontology. We associate an
expressive Local-as-View [8] description with each data relation consumed or
produced by a service. Second, we provide a set of domain-independent relational

operations and a framework to de�ne generic domain-dependent operations that
can bridge the di�erences between the inputs and outputs of services.

In this section, we �rst present the planning algorithm that generates the
work
ow. Then, we describe the three types of operations that Argos supports:
domain-dependent, domain-independent, and generic domain-dependent.

3.1 Planning Algorithm

Our planner for work
ow composition performs a regression search in plan space
in the same fashion as partial-order planners such as UCPOP [17] and Sage [12].
The planner starts with the user data request as a goal and terminates the
search when it �nds a complete plan, that is, a plan where all data inputs to the
component services are produced by other operations or sources.

The planning algorithm appears in Figure 4. The algorithm keeps an agendaA
of services with unachieved inputs. Each element in the agenda is a pair [g; s]
that consists of a data description g which is an unachieved input of service s.
The planner non-deterministically chooses a plan re�nement that solves an ele-
ment from the agenda, that is, it searches the space of plans. The Argos planner
considers three types of plan re�nements: domain-dependent, generic domain-
dependent and domain-independent.

In each plan re�nement, the basic operation is to satisfy the input of a service
with the output of another service. In order to ensure that the input and the out-
put data relations are semantically compatible, the planner performs a relational

subsumption or equivalence test. If the test succeeds, the planner establishes a
data link from the output relation of one service to the input relation of the
other service. This mechanism is analogous to the establishment of a causal link
in plan-space planning [17] where the e�ect of an operator produces a precondi-
tion of another operator. However, instead of using simple uni�cation to match
a precondition with an e�ect predicate, our planner uses relational subsumption
(or equivalence), because our inputs and outputs are universally quanti�ed for-
mulas that represent data relations. If an operation allows incomplete inputs, it



planner(P;A)
select pair [g; s1] from agenda A
choose[P 0; A0] 2 plan-re�nements(P;A; [g; s1])
planner(P 0; A0)

add-domain-service(P;A; [g; s1])
8s2 2 services(Domain) such that

9g2 2 outputs(s2) such that
equivalent(g2; g) (or subset(g2; g))

P 0 := add-data-link(add-step(P; s2), [s2; g2; g; s1])
A0 := A � f[g; s1]g [ f[g2i; s2]= g2i 2 inputs(s2) g
push [P 0; A0] into re�nements

return re�nements

plan-re�nements(P;A; [g; s1])
return union(
reuse-service(P;A; [g; s1])
add-domain-service(P;A; [g; s1])
;; generic domain-dependent ops

add-product-conversion(P;A; [g; s1])
add-unit-conversion(P;A; [g; s1])
;; relational domain-independent ops

add-selection(P;A; [g; s1])
add-projection(P;A; [g; s1])
add-join(P;A; [g; s1])
add-union(P;A; [g; s1]) )

Fig. 4. Argos Planning Algorithm

su�ces to prove that the description for the output of the provider operation is
contained in the input of the consumer operation.

The Argos planner uses a best-�rst search strategy with a simple (non-
admissible) heuristic that prefers to work on plans with the least number of
unachieved inputs and contains the least operations already in the plan. As a
heuristic optimization, the planning algorithm prefers to reuse an operation al-
ready in the plan rather than to insert a new one. This strategy usually leads to
plans with a minimal number of operators in an e�cient manner.

Since in our planning domain there are no negated e�ects (the operations
do not destroy information), there is no need for threat detection as in classical
partial-order planning. Our planner is limited to generating work
ows that are
directed acyclic graphs.

3.2 Domain-Dependent Services

Domain-dependent services are described by an input/output signature with pre-
de�ned data relations. For example, the relation LACMSA-2000-EMP of Figure 3
describes the output of a service. A service can have multiple input and output
data relations. Each service description is bound to a service implementation
that can be a web service or a local program.

3.3 Domain-Independent Adaptors

In order to bridge the inputs and outputs of di�erent services, Argos provides
a set of built-in domain-independent adaptor services that correspond to the
relation algebra operations: selection, projection, join, and union.
Selection. The selection plan re�nement checks whether a data relation can be
achieved by a selection operation on the output of an existing service. Since our
descriptions are signi�cantly more expressive that those used in databases, prov-
ing the applicability of selection involves reasoning with background information
in the ontology, not just the data de�nitions.

The algorithm for the add-selection plan re�nement appears in Figure 5.
The process is better described using an example. Assume that a service Sc

requires as input the employment data for the TAZs in Los Angeles County, as
described by the LA-2000-EMP relation of Figure 6(a). Further assume that there



add-selection(P;A;< wantR; sc >)
8 haveR 2 outputs(sp) ^ sp 2 services(Domain) ^

relation-concept-mapping(haveR;wantSC) ^ superconcept(wantSC;wantC) ^
relation-concept-mapping(wantR;wantC)

[compatible;mapping; selections] := compatible-signatures(haveR;wantR)
if compatible then
argsSelR := apply(mapping,args(haveR))
selR := (kappa (argsSelR) (and haveR selections))
if equivalent(selR;wantR) then
s� := create-select-service(haveR; selections; selR)
P 0 := add-data-links(add-step(P; s�), < s�; wantR; sc >)
A0 := A � f< wantR; sc >g [ f< haveR; s� >g
push < P 0; A0 > into re�nements

return re�nements

compatible-signatures(haveR;wantR;wantC)
Check that args(haveR) and args(wantR) satisfy conditions:
1. 8 wa 2 args(wantR) 9 ha 2 args(haveR) equivalent(type(wa),type(ha))
push [wa 7! ha] into mapping

2. 8 a 2 args(haveR) ^ a 62 mapping

9K 2 de�nition(wantC) ^ individual(K) ^ equivalent(type(K), type(a))
push (= a K) into selections

return [ (and 1 2), mapping; selections]

Fig. 5. Selection Plan Re�nement

is another service Sp that is able produce the employment data for all the TAZs of
the LACMSA, that is, one of the outputs of Sp is the LACMSA-2000-EMP relation
described in Figure 3. Note the di�erences between the two data descriptions.
The LA-2000-EMP table has three columns and contains data only for TAZs
in Los Angeles county (g-LA). The LACMSA-2000-EMP table has four columns
and contains data for TAZs in the �ve-county LACMSA. Intuitively, the system
can prove that since Los Angeles is a geographical part of the LACMSA (cf.
Figure2), LA-2000-EMP is a subset of LACMSA-2000-EMP, and thus the planner
can just select from it to achieve the goal.

The relations that are candidate for a selection operation must be a superset
of the goal relation. The add-selection re�nement �rst �nds each candidate
relation haveR, which is the output of an existing service Sc, and whose as-
sociated concept wantSC is a superconcept of the associated concept wantC

of the goal relation wantR. In our example, wantR is LA-2000-EMP, wantC
is Employment-2000-LA-TAZ-SIC, wantSC is Employment-2000-LACMSA-TAZ-
-SIC, and haveR is LACMSA-2000-EMP. The compatible-signatures procedure
tests whether the arguments of the candidate and the goal relations are compat-
ible by testing two conditions. The �rst condition �nds a mapping between ar-
guments of the same type. In our example, the arguments types of LA-2000-EMP
map to the fourth (TAZ), third (Product-SIC-4-1999), and second (Number)
arguments of LACMSA-2000-EMP. The second condition tests whether there are



(defrelation LA-2000-EMP ((?taz TAZ) (?p Product-SIC-4-1999) (?jobs Number)) :<=>
(exists (?o) (and (Employment-2000-LA-TAZ-SIC ?o)
(hasProduct ?o ?p) (hasGeo ?o ?taz) (TAZ ?taz) (hasValue ?o ?jobs))))

(defconcept Employment-2000-LA-TAZ-SIC (?o) :<=> (exists (?p ?taz ?jobs)
(and (Measurement ?o) (hasGeo ?o ?taz) (TAZ ?taz) (geoPartOf ?taz g-LA)

(hasProduct ?o ?p) (Product ?p) (ofClassification ?p SIC-4-1999)
(hasUnit ?o u-NumberOfJobs) (hasTimeInterval ?o 2000) (hasValue ?o ?jobs))))

(relation-concept-mapping LA-2000-EMP Employment-2000-LA-TAZ-SIC)

(a) Input Required by Service Sc

(kappa ((?taz TAZ) (?p Product-SIC-4-1999) (?jobs Number))
(and (LACMSA-2000-EMP ?c ?jobs ?p ?taz) (= ?c g-LA)))

(b) Output of Selection Operator (which is equivalent to input required by Service Sc)

LA-2000-EMPselection
(= ?county g-LA)LACMSA-2000-EMP ScSp

(c) Plan with Relational Selection Adaptor

Fig. 6. Domain-Independent Adaptor: Selection

constants/individuals in the de�nition of the concept wantC associated with the
goal relation wantR of the same type as the unmapped arguments of the candi-
date relation haveR. In our example, the unmapped argument is USCounty and
the de�nition of Employment-2000-LA-TAZ-SIC contains the individual g-LA
which is an instance of USCounty. Finally, the add-selection re�nement checks
whether the anonymous3 relation de�nition selR, the conjunction of relation
haveR and found selections (shown in Figure 6(b)), is equivalent to the goal re-
lation wantR (LA-2000-EMP). If so, the re�nement succeeds and adds a selection
service to the plan, as shown in Figure 6(c).
Projection, Join and Union. The projection, join and union plan re�nements
have a similar purpose as the corresponding relational algebra operations. They
introduce a projection, join or union service to enable the match of inputs and
outputs. The algorithms for these re�nements are analogous to the selection re-
�nement we described above. The algorithm for the projection plan re�nement
searches for an output relation of a service whose projection into the desired at-
tributes is equivalent to/contained in the desired input relation. The algorithm
for the join (union) plan re�nement searches for outputs relations whose con-
junction (disjunction) is equivalent to/contained in the desired input relation.

3.4 Generic Domain-Dependent Adaptors

There are a variety of operators that lie between the completely domain-speci�c
operators that are described by prede�ned input and output datasets (cf. Sec-
tion 3.2), and the domain-independent operators that are applicable to any
dataset description regardless of the domain (cf. Section 3.3).

Product conversion is a prime example of a generic, but domain-dependent
operator. Economic data is reported in a variety of classi�cations, such as SIC

3 Anonymous relations in PowerLoom are denoted with the kappa symbol (by analogy
to anonymous functions in the lambda calculus).



(defrelation LACMSA-2000-EMP-NAICS (?county ?jobs ?product ?taz) :<=>
(exists (?o) (and (Measurement ?o) (hasGeo ?o ?taz) (TAZ ?taz)
(geoPartOf ?taz ?county) (USCounty ?county) (geoPartOf ?taz g-LACMSA)
(hasProduct ?o ?product) (Product-NAICS-6-2002 ?product)
(hasUnit ?o u-NumberOfJobs) (hasTimeInterval ?o year2000) (hasValue ?o ?jobs))))

(a) Desired Data Relation

(retrieve all (?s ?x) (and (source ?s) (hasOutput ?s ?x) (subset-of ?x
(kappa (?fp ?tp ?proportion) (exists (?o) (and (ProductConversion ?o)
(fromProduct ?o ?fp) (toProduct ?o ?tp) (Product-NAICS-6-2002 ?tp)))))))

(b) Ontology Query to Retrieve Product Conversion Relations

(defrelation SIC2NAICS (?fp ?tp ?proportion) :<=>
(exists (?o) (and (ProductConversion ?o) (fromProduct ?o ?fp) (Product-SIC-4-1999 ?fp)
(toProduct ?o ?tp)(Product-NAICS-6-2002 ?tp) (hasValue ?o ?proportion) )))

(c) Product Conversion Relation

LACMSA-2000-
EMP-NAICS

Product Conversion
SIC to NAICS

KAPPA(
LACMSA-2000

-EMP-SIC) Sc

SIC2NAICSSp

(d) Plan with Product Conversion Adaptor

Fig. 7. Generic Domain-Dependent Adaptor: Product Conversion

or NAICS. Thus, when integrating data from di�erent sources, the system must
translate between classi�cations. Instead of de�ning a host of domain-speci�c
operators, we added a generic product conversion re�nement to the Argos library.

When the planner needs to satisfy a given request for products in a clas-
si�cation C2, the add-product-conversion re�nement introduces a product
conversion service and subgoals for obtaining a conversion table from C1 to C2
and the desired data in classi�cation C1. As an optimization, the re�nement
checks the service descriptions to ensure that the C1-to-C2 conversion table is
the output of an available service. Figure 7 shows an example. Assume that
a service Sc requires as input the employment data for LACMSA by 6-digit
NAICS industry codes as described by the relation in Figure 7(a) (for simplicity,
we show the direct not the factored representation). First, the algorithm �nds
sources for conversion tables into 6-digit NAICS by issuing the query shown in
Figure 7(b) against the ontology. Assume that it �nds a source Sp that produces
the relation SIC2NAICS of Figure 7(c). Second, the algorithm adds a product
conversion service and subgoals on obtaining a data relation with the same def-
inition as the originally desired relation except that the product classi�cation is
in SIC instead of NAICS codes. The resulting plan is shown in Figure 7(d). Our
system also includes a unit conversion operator that works in a similar fashion.

4 Empirical Evaluation

We tested our work
ow planner using two ontologies. The �rst is our production
ontology, Argos (A), that was created by consulting our domain experts. It con-



tains 162 concepts, 67 relations, and 28 domain service descriptions (17 sources
and 11 operations, with a total of 37 input and 32 output data relations). The
data sources used di�erent product classi�cations (SCTG, NAICS, SIC, IM-
PLAN). With the help of 5 conversion tables de�ned by the domain experts,
these products classi�cations are eventually mapped into one product classi�ca-
tion for uniformity. The second ontology, Extended Argos (EA), we de�ned with
the purpose of testing the planner in a domain where cycles of operations are
possible. This ontology includes 17 product conversion tables that can convert
between any pair of classi�cations and may lead to in�nite cycles of product con-
versions. It contains 173 concepts, 79 relations, 40 domain services (29 sources
and 11 operations, with a total of 37 inputs and 44 outputs).

Table 1 shows the planning performance on 18 typical queries. For exam-
ple, the third row, query Q3, shows the results for the LA-2000-EMP relation of
Figure 6. Query Q17 asks for the total (intra- plus inter-regional) demand for
all TAZs in the LACMSA region for all transportation modes. Query Q18 asks
for the truck tra�c volume for all links of the LACMSA highway network. In
response to Q18, Argos generates the work
ow of Figure 1(b). Figure 1(c) shows
the results of query Q18 displayed in ArcGIS.

We tested the work
ow planning algorithm with ontologies A and EA. We
report the number of services and data links in the resulting work
ows, the total
work
ow generation time and the portion spent in PowerLoom reasoning (both
in seconds), the number of subsumption tests, and the number of search nodes
(partial plans) generated and visited. The experiments were run on a laptop
running Windows XP with a 2GHz processor and 2GB of memory.

Overall, we �nd the planning performance satisfactory for data processing
work
ows, where the execution time of the work
ow dominates. Consider queries
Q17 and Q18 that generate the largest work
ows. For Q17 the planning time is
61.58 seconds, generating a work
ow with 53 services. The execution time is 224
seconds, processing a total of 2056247 tuples, and producing a result relation
with 74350 tuples. For Q18 the planning time is 73.29 seconds, generating a
work
ow with 54 services. The execution time is 1280 seconds, processing a
total of 1980860 tuples, and producing a result relation with 89356 tuples.4

The results show that the increased possibilities for product conversion in
ontology EA increases the planning time in the largest plans (from approx. 73
to 127 seconds) due to an increased number of subsumption queries, but on the
other hand they lead to shorter plans (from 54 to 51 services).

We also tested unsatis�able requests that could lead to an in�nite chain of
product conversion operators. In ontology A the products conversions form an
acyclic directed graph, so there is no possibility of in�nite subgoaling. However,
in ontology EA there are cycles. Thus, we added a limit to the depth of chains of
instantiations of the same operation, in our example, product conversion chains.
Experimentally, to prove a query unsatis�able with chain limits of length 3 and 5,
the planner using ontology A takes 4 and 4.17 seconds, respectively, and using

4 The last step in the work
ow for Q18, the network equilibrium algorithm which
computes truck tra�c in each highway link, is particularly time consuming.



ontology EA it takes 89.70 and 236.42 seconds, respectively. There is also a prac-
tical reason for such limit. Since each product conversion is an approximation,
a long chain would produce very low quality data.

Query Services Data
Links

Planning
Time (s)

PowerLoom
Time (s)

Subsump-
tions

Plans
Gener-
ated

Plans
Visited

A EA A EA A EA A EA A EA A EA A EA
Q1 2 2 1 1 1.98 2.22 1.98 2.2 8 8 1 1 1 1
Q2 3 3 2 2 2.74 3.36 2.74 3.36 16 16 2 2 2 2
Q3 4 4 3 3 4.36 5.23 4.33 5.15 30 36 3 9 3 3
Q4 5 5 4 4 3.69 3.61 3.52 3.59 34 42 4 12 4 4
Q5 6 4 5 3 3.27 5.89 3.23 5.84 50 82 8 23 5 7
Q6 11 11 10 10 5.22 6.2 5.19 6.19 76 76 10 10 10 10
Q7 11 11 10 10 5.47 5.89 5.45 5.84 76 76 10 10 10 10
Q8 11 11 10 10 5.52 6.22 5.48 6.2 76 76 10 10 10 10
Q9 11 11 10 10 5.5 5.89 5.44 5.86 76 76 10 10 10 10
Q10 12 9 11 8 5.94 16.45 5.94 16.3 117 325 16 98 13 31
Q11 17 12 17 12 6.22 19 6.09 18.66 151 389 24 121 19 39
Q12 18 13 19 14 7.09 19.61 6.92 19.22 159 397 27 124 21 41
Q13 18 13 19 14 7.14 19.61 7 19.33 159 397 27 124 21 41
Q14 33 33 44 44 15.64 16.84 13.36 14.44 250 250 44 44 44 44
Q15 33 33 44 44 15.88 16.86 13.61 14.48 250 250 44 44 44 44
Q16 53 48 69 64 60.25 89.59 22.34 68.59 442 722 78 187 71 95
Q17 53 48 69 64 61.58 90.39 23.54 69.1 442 722 78 187 71 95
Q18 54 51 71 67 73.29 127.67 69.16 115.75 435 600 78 171 75 110

Table 1. Experimental Results

5 Related Work

Our planner is inspired by the representation of information gathering actions of
the Sage planner [12] of the SIMS [4] mediator, where knowledge preconditions
and e�ects were represented as queries. However, our work has several major
di�erences with SIMS. First, our domain and service descriptions, expressed in
PowerLoom, are signi�cantly more expressive than SIMS's use of the Loom de-
scription logic. For example, relational subsumption over recursive descriptions,
as required by the geoPartOf relation in the selection example of Figure 6 could
not be performed in SIMS. Second, Argos uses subsumption to established data
links, while SIMS relied on syntactic matching to establish causal links. On the
other hand, SIMS included cost optimization techniques [3], like pushing selec-
tions, that we have not (yet) incorporated in our planner.

The TAMBIS system [5] integrated heterogeneous data and analysis tools in
a bioinformatics domain. They used a domain ontology expressed in the GRAIL
description logic as a basis of the integration. We share many of the goals of
TAMBIS. However, our local-as-view relational descriptions and use of relation
subsumption (as opposed to TAMBIS's concept subsumption) yields a more
expressive and principled system that can produce more 
exible work
ows.

With respect to the shim classi�cation of [10], our adaptors fall mostly in
the the semantic translator category (e.g., product conversion). However, the
relational-algebra adaptors (Section 3.3) constitute a new class of adaptors.

Szomszor et al. [23] present an approach to syntactic mediation in web service
work
ows that automatically inserts type adaptors that translate XML data. In



contrast to their work, we do not focus on specifying the implementation of a
translation operator, only on describing semantically the input/output signature.
Incidentally, since we deal with relational data, sometimes translations can be
implemented as SQL queries (with aggregation), as is the case in the product
conversion adaptor.

Our domain modeling builds on the idea of faceted representations (e.g. [19]).
In particular we structured some of the main concepts in the ontology along basic
dimensions like location, time, product, similarly to the Energy Data Collection
(EDC) project [1]. However, we have a more re�ned domain ontology. More
critically, since EDC was based on SIMS, its ability to describe data was limited.

Research on mixed-initiative composition of scienti�c work
ows [11, 22] also
leverages semantic descriptions. However, Argos uses a more expressive descrip-
tion language and focuses on automatic composition.

There has been research on automatic web service composition within the
AI planning community: executable grid work
ows [6], HTN-based composition
[20], composition using Golog-procedures [15]. Some of these systems are more
expressive than Argos since they model state change. However, Argos provides
more expressive data representation and manipulation.

6 Discussion and Future work

We have presented a logic-based planning approach to automatically compose
data processing work
ows. We describe data and services using a formal ontol-
ogy. The planner uses the ontology and relational subsumption, provided by the
PowerLoom reasoner, to construct work
ows that answer user data requests.

We are currently working on using query reformulation to link services' in-
puts and outputs. Inputs can be seen as queries and outputs as views (in the
database sense), so standard techniques for answering queries using views [8] can
be applied. We are exploring more restricted languages like conjunctive queries,
as well as developing a query reformulation algorithm for the PowerLoom �rst-
order logic based on abductive reasoning.

Finally, we plan to incorporate cost optimization knowledge into the planner,
so that it generates more e�cient work
ows, for example, by pushing selections
closer to the sources and other optimizations.
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