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Abstract. In  this  paper  we  describe  RDFSync,  a  methodology  for  efficient 
synchronization  and  merging  of  RDF  models.  RDFSync  is  based  on 
decomposing  a  model  into  Minimum Self-Contained  graphs  (MSGs).  After 
illustrating  theory  and  deriving  properties  of  MSGs,  we  show how a  RDF 
model can be represented by a list of hashes of such information fragments. The 
synchronization procedure here described is based on the evaluation and remote  
comparison of these ordered lists. Experimental results show that the algorithm 
provides  very  significant  savings  on  network  traffic  compared  to  the  file-
oriented  synchronization  of  serialized  RDF graphs.  Finally, we  provide  the 
design and report the implementation of a protocol for executing the RDFSync 
algorithm over HTTP.
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1   Introduction and definitions

Remote synchronization of data files is a procedure by which local information (e.g. 
A data file) is updated over a network in order to be made identical with a remote one 
(or  vice  versa).  Synchronizing  could  be  trivially  achieved  by  copying  the  entire 
remote  file  locally  and  then  comparing  it  with  the  local  one,  but  this  is  largely 
undesirable due to the performance issues in comparing the entire data file and most 
of all due to the bandwidth cost of frequent full data transfers.

In 1998, the rsync algorithm was developed [1] to efficiently synchronize remote 
binary files. rsync operates under the assumption that the changes will be significantly 
lower in size compared to the data file itself and that these are likely to happen in 
“clusters”, that is, in localized spots rather than distributed across the file. When this 
is the case, rsync can achieve synchronization by transferring data in quantity just 
slightly higher than the size of the changes. As such, rsync and others comparable 
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algorithms that later followed are today the backbone of data replication across the 
Internet.

In this paper we provide an algorithm for the efficient synchronization of RDF 
models.  RDF  Models  cannot  be  efficiently  synchronized  by  the  rsync  or  similar 
algorithms due to the RDF semantics itself. Serializing an RDF model could in theory 
result in a factorial number of ordering for the composing triples and even more when 
blank nodes are involved. Remote RDF synchronization has been highlighted as a 
very important but open problem [2]. 

One could think of serializing the graph into a deterministic, canonical way,  e.g. 
by ordering the triples in lexicographical order. This is partially possible as we will 
see,  but  the  results  of  a  simple  rsync  synchronization  will  be  shown to  be  still 
unsatisfactory, especially  when  graphs  contain  blank  nodes  (e.g.  FOAF  personal 
profile documents, OWL/RDFS ontologies, etc.). 

Our proposed algorithm, which we call  RDFSync, works by decomposing RDF 
graphs in minimal subsets of triples and then creating hashes that can be sorted and 
efficiently synchronized. In this way, we will show how the RDFSync algorithm can 
exhibit on RDF models the same behavior of rsync for general data files: as long as 
the number of triples involved in changes is small compared to the size of the entire 
model, as is the case for frequent updates, the network traffic and the computational 
power required for the synchronization will be very small. 

With more and more data being made available on-line on the Semantic Web as 
HTTP retrievable  data  (open  linked  data  model  or  RDF  dumps),  the  RDFSync 
algorithm seems of great importance to enable the Semantic Web itself to scale. With 
respect to this, we conclude this paper by illustrating how the RDFSync algorithm can 
be  transparently  exposed  by  a  web  server  providing  its  service  over  HTTP and 
triggered by a standard content negotiation procedure. 

The paper is structured as follows: the basic theory for the decomposition of RDF 
models into Minimum Self-contained Graphs (MSG) is illustrated in section 2. This 
will be used to derive methodologies for remote RDF synchronization, illustrated in 
section 3. Experimental results will be illustrated and discussed in section 4, while 
additional issues are covered in section 5. Section 6 will illustrate the algorithm as 
implemented on top of HTTP.

1.1   Different sync modalities

Unlike rsync, which can only be used to make remote files identical, RDFSync is capable of 
performing different “kinds” of synchronization between a target and a source model. 

Figure 1: Starting from two graphs and considering one of them the 'source' and the other  
the 'target', we show how the target will be modified by running RDFsync in different modes.  
Edges and nodes with the same color and number are equals, different colors and numbers  
represent different RDF statements.



Using the algorithms we propose, it will be possible to cause the target:
• to be equal to the merge of both graphs (Target Growth Sync, TGS);
• to delete information that is not known by the source (Target Erase sync, TES);
• to be equal to the source (Target Change Sync, TCS).

Figure 4 shows these different kinds of exchanged and the resulting RDF graphs.
Here, the definition of merge and equals are strictly derived from RDF Semantics [3]. 
This means in practice that:

• B-nodes IDs will not be preserved;
• Sync is not required to transfer redundant information that might be contained in 

the graphs. This means that the only lean versions of two graphs (as defined in [3]) 
are required to be isomorphic for the graphs to be considered equal;
• Serialization format idiosyncrasies (e.g. RDF/XML comments) are ignored.

2   The Minimum Self Contained Graph theory

In this section we will illustrate the Minimum Self-Contained Graph (MSG) theory. 
This and the following section expand on  [4] by considering additional cases and 
conditions. The theory set forth in [4] is here reported in full to serve as base for the 
discussion of the RDFSync algorithm.

Let's first define what is the minimum “standalone” fragment of an RDF model. As 
blank  nodes  are  not  addressable  from  outside  a   graph,  they  must  always  be 
considered  together  with  all  surrounding  statements,  i.e.  stored  and  transfered 
together with these. MSGs are the smallest components of a lossless decomposition of 
a  graph  which  does  not  take  into  account  inference  (e.g.  the  OWL methods  for 
detecting identity of nodes). Discussion about RDFsync with respect to inference is 
given in section 5.3. 

We will here give a formal definition of MSG (Minimum Self-Contained Graph) 
and will prove some important properties.
Definition 1. An RDF statement involves a name if it has that name as subject or  
object.
Definition 2. An RDF graph involves a name, if any of its statements involves that  
name.
Definition 3. Given an RDF statement s, the Minimum Self-Contained Graph (MSG)  
containing that statement, written MSG(s), is the set of RDF statements comprised of  
the following:

• The statement in question;
• Recursively, for all the blank nodes involved by statements included in the 

description so far, the MSG of all the statements involving such blank nodes;
This definition recursively builds the MSG from a particular starting statement; we 
now show however that the choice of the starting statement is arbitrary and this leads 
to a unique decomposition of any RDF graph into MSGs.
Proposition 1. The MSG of a ground statement is the statement itself.
Theorem 1.  If s and t are distinct statements and t belongs to MSG(s), then MSG(t) 
= MSG(s). Proof: We  first show that MSG(t) ⊂ MSG(s) and then MSG(s) ⊂ MSG(t).  
MSG(t)⊂MSG(s):  This  is  straightforward from Definition 3 and knowing that  t  ∈ 
MSG(s).  MSG(s)⊂MSG(t):  Let  t  be  a  ground  statement.  Then  MSG(t)  =  t  for  
Proposition 1. But then t  ∉ MSG(s), which contradicts the hypothesis t  ∈ MSG(s).  



Hence,  t  is  not  a  ground  statement.  Then  there  is  either  a  single  blank  node  
connecting the statements t and s (e.g., writing statements in n3, t=”:a :p :_id1”,  
s=”_:id1 :q :b”) or there is a sequence of blank nodes connecting t and s. In the first  
case, there is a blank node of s involving t (by hypothesis, since t  MSG(s)). So s ∈ ∈  
MSG(t)  and  MSG(s)   MSG(t).  In  the  second  case,  there  is  a  blank  node  of  s⊆  
involving MSG(t), also in this case s  MSG(t) and MSG(s)  MSG(t). In other case,∈ ⊆  
where s does not involve any blank node of t or of MSG(t), the hypothesis t ∈ MSG(s)  
is contradicted.
Theorem 2. Each statement belongs to one and only one MSG. Proof: Let s ≠ t ≠ u  
be  distinct  statements,  and  let  s  belong to different MSGs:  s ∈ MSG(t)  and  s  ∈ 
MSG(u).  By  Theorem 1,  MSG(s)=MSG(t)  and  MSG(s)=MSG(u),  hence  MSG(t)  = 
MSG(u), so the three MSGs considered are actually the same.
Corollary 1. An RDF model has a unique decomposition in MSGs. Proof: This is a  
consequence of Theorem 2 and of the determinism of the procedure.

3  MSG based graph decomposition and merging

As a consequence of Corollary 1, after a graph has been decomposed into MSGs, it 
can be incrementally transferred between parties with granularity down to one MSG 
at  a  time.   As a  consequence of  theorem 2,  such a transfer  would be  maximally 
network efficient since statements would never be repeated. While the above results 
intuitively apply to most of the graphs, there are a few special cases which require 
particular attention. 

3.1  Non-lean graphs
In the same way as in relational databases table entries are never duplicated, RDF 
graphs are defined as being set of triples rather than a collection of triples, that is, 
triples are never duplicated. However, even without containing duplicate triples an 
RDF graph may contain redundant information.

The reason of this is that the RDF semantics gives blank nodes the meaning of 
existentially  quantified  variables,  so  while  it  is  legal  to  have  a  graph  containing 
multiple isomorphic subgraphs, such a graphs is said to be 'non lean' as it  expresses 
exactly  the  same knowledge  as  it  would  have  after  removing  all  but  one  of  the 
isomorphic subgraphs. In other words, a non-lean graph is a graph in which some of 
its triples can be removed without changing the meaning of the information expressed 
in the graph. 

In  the case of a  non-lean graph, the decomposition into MSGs could result in a 
certain amount of MSGs to be completely indistinguishable if it were not for the ids 
of the blank nodes they contain, so they are isomorphic. In such situations the MSG is 
said to be 'repeated' in the decomposition.

While such a redundant information can be kept in RDF serialization formats and 
most  RDF  triplestores  currently  available  do  not  remove  redundancies, 
implementations of RDFSync are not required to transfer redundancies: in fact the 
only reason for an RDFSync implementation to keep redundancies in some cases is 
the computational cost of complete leanification. 



In the case of the decomposition into isomorphic MSGs a partial leanification can 
be  done  in  the  interest  of  saving  in  terms  of  network  bandwidth  and  storage 
requirements as more convenient processing of the target graph(s). 

For  these  reasons  RDFSync considers  two graphs  equivalent  even  if  the  same 
MSG is repeated in one of the decompositions and not in another one: this might 
result in two graphs with different number of triples after the synchronization, but still 
the lean versions of the resulting graphs will be isomorphic. 

3.2  Removing redundant MSGs
There are other cases in which, with respect to the RDF semantics, an MSG can be 
removed from a decomposition without changing the meaning of the graph resulting 
from merging the MSGs. This happens when the graph resulting from removing an 
MSG a (i.e. the union of the remaining MSGs) has a subgraph which is an instance of 
a, in which case  a can be removed without changing the content expressed by the 
graph. With respect to RDF semantics the MSG b is an instance of the MSG a, if they 
are  isomorphic  except  for  a  number  (zero  or  more)  of  blank  nodes  in  a which 
correspond to grounded nodes in b. 

In these cases, for the purpose of RDFSync, the MSG can be safely removed. Note 
however that other applications of MSGs, such as  tracking versions and provenance, 
which are outside the scope of this paper, may not allow removing such MSGs. So in 
the general case the identity criterion of a set of MSGs is not the same as of the graph 
resulting from the merge of this set.

3.3  Canonical Serialization of MSGs and MSG's hashes
MSGs  are  standalone  RDF  graphs  and,  as  such,  they  can  be  processed  with 
algorithms like canonical serialization in order to provide a sort  of digest or hash 
value of the graph (as discussed in [4]). We use an implementation of the algorithm 
described in  [5],  which is  part  of  the RDFContextTools Java library1,  to obtain a 
canonical string representing the MSG and then we hash it to an appropriate number 
of bits to reasonably avoid collisions (math and common sense say 128-160 bits will 
suffice). This hash acts as an unique identifier for the MSG.

There  might  be  issues  in  certain  situations  where  the  canonical  serialization 
described in [5] will behave in a non-deterministic way. It can happen for some graph 
structures  involving several  bnodes,  especially  where bnodes have no property  or 
label attached. Such cases are luckily not very frequent in real-world use cases and in 
particular in the RDF graph we experimented with (see section 4). 

As  there  is  a  finite  number  of  possible  serialization  alternatives,  it  is  always 
possible to compute all the hashes that an MSG, in one such very hard case, has and 
treat them as being equivalent in the synchronization procedure.

3.4  Canonical serialization and RDF graphs  synchronization
As  a  graph  can  be  decomposed  unequivocally  into  a  set  of  MSGs,  it  can  be 
canonically represented by the ordered list of the identifiers (hashes) of its composing 
MSGs. In the RDFSync algorithm, such lists are created independently at each end 
and ordered by the binary value itself. The synchronization is then performed in 2 
steps: 

1 http://semedia.deit.univpm.it/tiki-index.php?page=RdfContextTools



1. A diff between the source and the target ordered lists of MSGs is performed;
2. Such diff indicates which MSGs have to be requested from the other side and 
which should be deleted in the local model.

To perform the diff between the source and the target ordered list of MSGs, we 
first  need to transfer  or  locally  reconstruct  the remote  list.  For  this  purpose,  two 
procedures can be employed: the first, trivial one is to directly transfer the list, the 
second is to create a copy of the remote list, using the standard rsync, from the local 
list.

The latter approach can be shown to be highly efficient in case of small differences 
between the two lists, since rsync is optimized for differences which result in shifting 
of data blocks within the file. This is the case when small differences exist between a 
source and a target model; the few added or removed MSGs in the ordered list have 
the effect of “shifting” the remaining MSG hashes.

In case of MSGs hashes lists, big changes (e.g. a lot of MSGs added to one model) 
result in a great amount of hashes to be inserted in random positions of the list, which 
cause almost all the file to be transferred, plus, of  course,  the overhead of the rsync 
operation (calculating hashes of file sections, transferring and conparing them). The 
experimental  data,  as  shown  in  the  next  section,  can  be  used  to  select  the  best 
approach to follow, given an approximate estimate (e.g an expectation) of the amount 
of  differences  between  the  models  (e.g.  one  would  choose  the  rsync-based 
synchronization if the RDFSync is executed very often compared to the changes in 
the model). 

Once the two lists are available to the target host, a diff is computed in order to 
obtain:

• The list of MSGs to be requested from the remote model (in case of a TCS or 
TGS sync), which is then sent to the remote host which complies to the request.

• The list of MSGs to be deleted in the local model (in case of a TCS and TES 
sync).

Figure  2 illustrates  this  process,  showing  how  the  different  RDFSync 
methodologies can be applied to two remote MSG lists.

4  Experimental results

In  this  section  we  show  and  discuss  the  results  obtained  from  actual  runs  of 
RDFSync,  as  implemented  in  the  RDFContextTools.  Runtime  results  of  this 
implementation (the synchonized graphs)  have been validated with the diff utility 
independently developed within the 'RDF Utils' project2. We show the performance of 
the algorithm in three notable cases.

2 http://wymiwyg.org/rdf-utils

Figure  2:  Two ordered lists  of  MSGs  are processed by  RDFSync  in  different modes,  
producing different results at the target side.



Figure 3: Traffic vs Delta MSG for a graph that makes no use of bnodes

Figure 4: Traffic VS Delta for a graph with a moderate number of bnodes

Figure 5: Traffic vs delta MSGs for a graph that makes intense use of bnodes

One,  labeled  SyntGraph  no  bnodes, deals  with  a  synthetically  generated  graph 
composed  completely  by  ground  triples.  This  graph  is  1.07  MB  in  size  and  is 
composed by 8000 triples (therefore 8000 MSGs). The performance as evaluated on 
this graph is completely comparable with any other made completely of ground triples 
such as DBPedia dataset. The second one, labeled SyntGraph bnodes, also deals with 
a synthetically generated graph, this time with a moderate number of blank nodes 
(approximately 600, with MSGs composed by 2, 3 and 4 triples). The graph is 1.3 MB 
in size and has 9000 triples in 7800 MSGs. The third one, labeled DBWorld Graph is 
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a fragment of a real world graph which makes a more extensive use of blank nodes3. 
This  graph  is  2.1  MB and  contains  approximately  13000  triples  in  5000  MSGs. 
Performance  on  this  graphs  will  be  comparable  with  that  on  others  with  similar 
characteristics e.g. DBLP dump in RDF4.

The algorithms that we compare are:
• RDFSync Full list: by graph decomposition we produce a list of 64 bits MSG 

hashes. This is entirely copied on the other side and then the missing ones are 
requested;

• RDFSync rsync: the list of hashes, created as above, is synchronized itself with 
rsync. The missing MSGs are then copied;

• rsync: rsync is applied on a lexicographically sorted list of triples (Ntriples).
In every case the traffic shown is inclusive of all the algorithm overhead (hashes 

synchronization plus the actual transport of the MSGs serialized in Ntriples). 
The scale is the same for all the graphs and is pseudo logarithmic for the delta axis  

while linear on the traffic. As the lines are close in the SyncGraph no bnodes graph 
for the first part (low delta), the numeric results are reported in Table 1.

Table 1: The data from the low delta runs on the SyncGraph no Bnodes

Delta(in MSGs) RDFSync Full list RDFSync Rsync Rsync Ntriple
1 64126 1895 7403
2 64250 2743 12535
4 64504 4445 22805
6 64756 5693 33073
8 65008 7841 43341
10 65258 9539 53607
20 66506 17459 99935
30 67764 25801 156273
40 69036 28667 182599
50 70290 39237 221999
100 76582 57169 420507

As evident from the experimental data, applying the proposed algorithm gives very 
high bandwidth saving as opposed to the alternative rsync Ntriple algorithm in almost 
all cases. When bnodes are used in the graph, the difference is as much as the entire 
graph size for  any delta  (DBWorld Graph).  This can be explained with the blank 
nodes Ids (which are usually random generated by the triplestores) that have to be 
synchronized at the both ends. If these are too many, there will be more than one 
change per rsync block size thus causing the transfer of the entire dataset. 

Performances are dramatically different also when a small number of blank nodes 
are used (SyntGraph bnodes) as the blank node impose an almost constant weight 
which is otherwise not present for the RDF sync algorithm (especially in its rsync 
format). The different for small updates is huge, as much as 150 to 1 for a single delta 
MSG (1.8 k on the RDFSync algorithm vs 290k of rsync).
The most “difficult” case is the  SyntGraph no bnodes. Even in this case however, 
RDFSync outperforms rsync approximately 4 to 1 (for the single delta MSG) to reach 

3 http://sw.deri.org/~aharth/2005/08/dbworld/dbworld.rdf, representing calls for papers in RDF
4 http://lists.w3.org/Archives/Public/www-rdf-interest/2004Dec/0015
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approximately  8  to  1  past  the  100  MSG mark  (which  is  only approximately  1.2 
percent of the graph size). 

With respect to the difference between sending the entire list or not, these data 
shows that this is seldom a good strategy (if not in cases of very large expected delta).

4.1  Optimizations
The data transfer can be further optimized by using weaker hashes (a lower number of 
bits) with a master hash calculated at both ends list of hashes is as supposed to(no 
collision has detected). With this procedure in place, the MSG hashes could be of 32 
bits, thus cutting the list size in half, at the sole cost of having to redo the sync with 
stronger hashes in very rare cases when the weak ones fail. 

5  Additional issues

5.1  Complexity 
Computationally speaking, evaluating the MSGs each time one wants to RDFSync is 
a time consuming procedure;  although such algorithm is O(n) with n the number of 
triples, the large number of API calls to explore the graph usually determines a slow 
execution.  The  solution  is  to  use  caching  techniques  so  that  each  time  a  new 
information is inserted, the MSG is calculated. MSGs are by definition immutable 
(mutating one can be seen as removing a statement and adding another one), so this is 
possible to cache them with great efficiency. 

In the implementation constructed using OpenLink Virtuoso5, the MSG hashes are 
calculated in a server side stored procedure, saving on client-server communication 
delays. For graphs involving relatively few blank nodes, the MSG calculation time is  
near linear since all triples of a subject are read serially and translated from internal 
ID to the IRI (Internationalized Resource Identifier)6. 

With a 2GHz Xeon processor, about  13000 MSG’s can be calculated per second, 
provided a warm cache. An auxiliary table is used for sorting the MSG hashes, with a 
two-part key, consisting of a graph ID and MSG hash and a dependent part of subject, 
predicate and object. Keeping an up to date MSG table increases storage consumption 
by about 25%. Retrieval of MSG’s requires only a lookup of this table and typically 
no extra joining.

For graphs with hundreds of millions of triples, making the MSG list  is a time 
consuming process.  This  can be  alleviated by  keeping  an  update  log table  which 
records  additions  and  deletions  of  triples  with  an  associated  timestamp.  These 
changes can then be reflected on the MSG table and removed from the log table. The 
maintaining of a log table adds an overhead of approximately 15% to the insert or 
delete times and adds practically no IO since the additions are always in ascending 
order.

5.2  Non lean MSGs
It can happen, in situations in which an MSG is not lean, that  is  it  has a  duplicated 
statement where, for example, the subject and the predicate are identified by the very 

5 http://www.openlinksw.com/virtuoso/
6 http://www.w3.org/International/O-URL-and-ident



same URI but the objects are two distinct blank nodes. In this case, this MSG can be 
considered to be equivalent to a lean version (where one of the duplicated statements 
is missing), but the hashes of the two MSGs turn out to be different. 

This  can be  avoided by  leanifying  each  MSG before  carrying  out  the  hash,  a 
procedure that will be addressed in future versions of the RDFSync implementation.

5.3  Shortcomings of the heuristic canonical serialization
It  is  possible  that,  by  using  the  canonical  serialization  as  described  in  [5],  two 
isomorphic  MSGs  give  two  different  hashes.  This  is  true  in  cases  where  many 
consecutive blank nodes are used and these are connected to the same URI. In this 
case, labeling of blank nodes becomes difficult and a 2 step algorithm can fail. It is 
conjectured that an N step canonical serialization algorithm could probably take care 
of all these cases but as it is not proven and as the complexity of such algorithm 
would necessarily be higher, for RDFSync we follow a different approach. 

In case an MSG is in fact serialized differently at the two ends, this would show as 
“missing”  from  one  side  and  “added”  from  the  other.  Once  transferred,  the 
“additional” one is in fact checked against all the “missing ones” for isomorphism in 
order to rule out such case. Such checking is usually very fast given that MSGs are 
usually small, furthermore a simple node count and or a simple lexicographical triple 
ordering can rule out trivial cases.

5.4  Inferencing
It is to be noticed that, beyond RDF-entailment, this paper does not take into account 
other reasoning capabilities as provided by RDFS [6] and OWL [7].  The algorithm is 
therefore  applicable  to  "base"  RDF  models,  that  is,  sets  of  triples  with  no 
consideration for automatic inferences (e.g. same-as or inverse-functional-properties). 

Under a certain point of view, this is somehow “cleaner” as it does not require that 
the  sending  and  the  receiving  party  agree  on  ontologies.  In  particular  scenarios, 
however, the decomposition into MSGs could lead to very big chunks of data, for 
example  for  databases  which contain  a  lot  of  anonymous  resources  identified  by 
inverse  functional  properties.  In  this  case  the  MSG decomposition  would  lead to 
bigger  components  than  a  decomposition  taking  into  account  (inverse)  functional 
properties. 

An example of such a store would be a graph obtained my merging a number of 
personal FOAF files, where bnodes are often used to represent a person. In such cases 
the RDFSync procedure would still give correct results but the decomposition would 
degrade in efficiency, generating big MSGs containing information about more than 
one person (e.g. sub-groups of persons connected by foaf:knows properties). To avoid 
this,  inverse  functional  properties  can  be  used  to  stop the  recursion  in  the  MSG 
definition, similarly to what suggested in [8].

5.5  Atomicity and Integrity
Given that the MSGs hash are content based,  the RDFSync algorithm poses no real 
questions of atomicity and integrity. As each MSG is atomic per se, as long as one 
arrives entirely it can be added to the synchronizing database. If the flow of MSGs is 
interrupted, the synchronization can be restarted and it would only cover the missing 
MSGs (it would not repeat those that were previously transferred). 



6  RDFSync over HTTP

RDFSync,  as  implemented  to  perform  the  experiments  in  the  previous  section, 
operates  over  a  TCP/IP connection.  In  this  section  we  will  however  illustrate  a 
modification  of  the  RDFSync  algorithm  to  operate  on  top  of  HTTP.  Such 
modification has very important practical consequences: it is well known in fact that 
the modern Internet highly favors (if not enforces) HTTP over any other protocol as a 
way to reach out from any local  network configurations (e.g.  local firewalls).  So, 
while  the  TCP/IP  based  implementation  is  certainly  useful  for  server  to  server 
scenarios, the HTTP version is practically fundamental for client to server scenarios. 

The main challenge of  the  HTTP based synchronization  protocol  is  comparing 
large graphs and efficiently detecting a usually small set of  differences in  the  MSG 
checksum list by using a stateless request/response paradigm. 

In  the following,  receiver refers  to the party initiating the  synchronization and 
being updated,  while  sender is  the party providing the data.  The protocol  does a 
sequential merge of the sorted MSG checksum lists on either side: since the lists often 
have  largely  the  same  content,  the  protocol  keeps  a  pointer  on  the  receiver  and 
another on the sender. The pointers are said to be in sync if they point to the same 
checksum on either side.  

The lists of  MSG checksums are divided into blocks of  256 checksums.  This 
works  reasonably  if  there  is  a  difference  between  the  lists  every  1000-2000 
checksums, but can be varied based on difference estimates (e.g. based on the time 
since the last update). 

The synchronization step consists of the following:
• The receiver sends the checksum at its sync pointer plus a set of block checksums 

for checksum blocks starting at its sync pointer;
• The sender replies with the offsets of the blocks that are different;
• The receiver sends the checksum blocks for the blocks that were different;
• The  sender  replies  with  the  MSG serializations  that  are  needed  to  sync  the 

differing blocks. The message also contains the highest checksum covered in the 
step, indicating the sync pointer value on the sender.

The client sets its sync pointer to the sender's sync pointer. If the receiver has this 
same checksum, we repeat the process. If the receiver has a next checksum that is 
higher then the sender's next checksum, the receiver requests the MSG serializations 
with checksums between the receiver's sync pointer and the sender's sync pointer. If 
the receiver has no further checksums, it asks for the remaining MSG serializations. 
When both sync pointers are at end the process is completed.  Details of special cases 
are omitted for brevity. 

As mentioned, such sync process is stateless. It can be repeated any number of 
times and will terminate rapidly if both sides are already in sync. Locking of data in 
the data store is usually minimal since the transaction unit is small.

6.1  Performances
With the corpus of DBPedia7,  we have about 30 million triples accumulated over 
several  years  of  Wikipedia editing.  These  are  derived  from 1.6  million  articles. 
Assuming  a  rate  of  change  of  20% of  articles  per  year  and  assuming  a  change 
influenced half the triples in each, we’d have 3 million changed triples per year. This 

7 http://dbpedia.org/



would be an average of 8219 per day, or that is a checksum every 3650 checksums 
would change on the average. If we had a checksum block of 100 checksums, we 
could  send  units  of  4000 checksums,  represented  as  40  block  checksums of  100 
checksums,  equals  320  for  8  byte  checksums  plus  overhead  and  expect  one 
mismatched block in each. We would exchange the information in the mismatched 
block,  amounting to one  serialized MSG, under  100  bytes  compressed.  Thus,  we 
would cover an average of  3650 MSG’s with 2 round trips and about  500 bytes. 
Transferred. Thus, for a day’s worth of changes, we’d have 16438 messages totaling 
approximately  8.2  megabytes.  A full  HTTP download  of  the  same dataset  would 
require 1.6 Gigabytes of traffic. 

7  Specific applicability

The  Semantic  Web is  centered  around  the  idea  of  distributed  and  cooperative 
metadata production and consumption, hence the remote RDF model synchronization 
is clearly an important goal to achieve. This is even more so if one considers that most 
of the semantic web applications currently known (client side, such as Piggy Bank8, 
Tabulator9, DBin[9]) or server side work by downloading remote RDF data locally in 
order to then perform inference, queries  and data merging as needed. To make sure 
that the local data is up to date with the remote data, such applications today follow 
the “RSS approach” and continuously download the file to get updates. Clearly this is 
not  a  scalable  approach when databases of  considerable  dimensions  are  involved, 
hence the use of the RDFSync procedure to enable frequent updates at low cost. 

RDFSync can also be used to create powerful centralized RDF based services, by 
enabling  efficient  synchronization  across  a  grid  structure.  Graph  synchronization 
might be useful in the aggregation of news feeds available in RDF, such as RSS 1.0 
[10] or more recently as AtomRDF10 or AtomOWL11: since the same news is often 
published in different feeds, using RDFSync would prevent multiple downloading of 
the same entry. Another context of applicability, which has strong similarities with the 
one just described, could be within systems like URIQA [11], or in general following 
the  linked  data  paradigm,  where  a  server  answers  to  client's  requests  about  a 
URI/URL, returning a subgraph representing the knowledge of the server about the 
URI/URL. Using RDFSync in this case could allow clients to efficiently update their 
knowledge about a resource from an authoritative server. 

As said  in section  1.1,  RDFSync-based update  operations can be  performed in 
different  modalities.  These  modalities  address  distinct  scenarios  and  social 
environments.  The TGS mode,  for  example,  perfectly  fits  a  scenario like the one 
described in [12], where peers typically want to know everything that has been said 
around a topic.  The TGS modality would be used to merge the news from different 
sources (feeds) into one target model. The TCS mode could be preferable in a URIQA 
like  scenario,  where  information  owned  by  the  server  are  to  be  considered 
authoritative and clients might want to act as 'mirrors', thus deleting triples which are 
no more on the server. 

8 http://simile.mit.edu/wiki/Piggy_Bank
9 http://www.w3.org/2005/ajar/tab
10 http://djpowell.net/blog/entries/Atom-RDF.html
11 http://atomowl.org



Furthermore we think RDFsync might prove very valuable in mobile or wireless 
environments, where bandwidth efficiency issues are even more important.

8  Related Works

While the problem of finding diffs and generating patches for RDF graphs has been 
investigated, to the best of our knowledge, our algorithm is the first to address their 
efficient remote synchronization. 

An approach to diffs and patches of RDF graphs is described in  [2], where the 
authors introduce the concept of functionally ground nodes, which are blank with an 
inverse  functional  property  value.  Functionally  ground  nodes  behave  like  named 
resources,  once an  ontology has  defined which properties  are  inverse   functional, 
hence the diff algorithm becomes straightforward. This approach works under some 
assumptions on the RDF graph it  applies to.  All the nodes have to be ground, or 
functionally ground so it is not applicable to the general case, where blank might be 
non functionally ground (e.g. the 'root node' of an rdf:Bag construct). Furthermore, 
the  methodology  relies  on  the  OWL layer  for  identifying  the  inverse  functional 
properties,  limiting its  scope to  scenarios  where  an  ontology has been previously 
agreed upon and is owned by each party involved in the exchange. 

In this paper we considered the case of generic RDF graphs and we intentionally 
based our  approach on the  RDF layer  as  we  think that  ontologies  and reasoning 
capabilities should be applied at a different level. Choosing the appropriate ontology 
(or ontologies, as data could be heterogeneous) to present, edit and interact with the 
data, should be left, in our opinion, to domain aware applications, which could make 
use of RDFSync, at a lower level, for import and merge 'pure' RDF. 

The idea of  decomposing an RDF graph in small  parts,  which in our case are 
MSGs, has been investigated also in  [8], where the concept of “RDF molecules” is 
introduced in order to obtain smaller components by taking functional and inverse 
functional properties into account. The price to pay for this approach is an higher 
complexity of the decomposition and of the algorithms to achieve it, as well as the 
requirement of a shared set of ontological beliefs. Furthermore, the original concept 
of molecules does not provide a deterministic decomposition so that extensions had to 
be defined to allow this decomposition in implementations such as the RDF diff and 
patch utility in WYMIWYG rdf-utils12. This approach has been further developed by 
HP laboratories in Bristol, leading to the Graph Versioning System (GVS)13.

Many  works  in  literature  deal  with  the  problem  of  synchronizing  different 
'versions' of the same structured, XML based knowledge. [13], [14] and [15], describe 
algorithms and methodologies to merge and patch XML structured documents, both in 
the case of two-way synchronization (where the two files are independently created) 
and  three-way  synchronization  (where  the  two  files  are  separately  obtained 
refinements of the same source file, that is available to the merging algorithm). 

These algorithms are based on the analysis and comparison of DOM structures of 
the documents or of sequence and order of XML tags and PCDATA. These methods 
are not efficient if applied to RDF/XML, as RDF can be serialized in different ways 
and two different serializations could have the same information content.

12 http://wymiwyg.org/rdf-utils
13 http://gvs.hpl.hp.com/

http://gvs.hpl.hp.com/%5D
http://gvs.hpl.hp.com/%5D


9  Conclusions

We described a methodology to perform an efficient synchronization of RDF models  
called RDFSync. RDFSync is based on RDF Semantics only and it  is therefore a 
general purpose tool independent of the application domain and independent of the 
used ontologies. The sync acts purely on the level of the content expressed by RDF 
graphs as defined by RDF Semantics. 

Experimental results show that the algorithm provides very significant saving on 
network traffic compared to a simple rsync on a ordered list of triples.  Such savings 
are even more evident when small amounts of differences exists, in other words the 
more frequent are the updates, the more efficient they are.  This ultimately enables 
scenarios where large datasets (e.g. Even those of the size of DBPedia) can be kept in 
sync  even  multiple  times  a  day  with  local  (personal  or  intranet)  copies  without 
gigabytes of traffic locally and or terabytes of traffic remotely.

Finally, the procedure has been adapted also to operate over the HTTP protocol 
thus enabling end user clients to use it directly.
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