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Abstract. “[Reasoner] performance can be scary, so much so, that we
cannot deploy the technology in our products.” – Michael Shepard3.
What are typical OWL users to do when their favorite reasoner never
seems to return? In this paper, we present our first steps considering this
problem. We describe the challenges and our approach, and present a
prototype tool to help users identify reasoner performance bottlenecks
with respect to their ontologies. We then describe 4 case studies on syn-
thetic and real-world ontologies. While the anecdotal evidence suggests
that the service can be useful for both ontology developers and reasoner
implementors, much more is desired.

1 Introduction

Ontology engineering is the discipline of building a certain class of computational
artifacts — ontologies — which typically are a component of a larger software
system. Ontologies are used as conceptual models, for data integration, or to
directly represent information in a variety of domain areas. Today, most self-
described ontology development has used logic-based representation languages
to express ontologies, that is, ontologies are (in part) theories in some logic.
Indeed, the Web Ontology Language (OWL) is based on a description logic
and has spurred a large rise in the number of publicly available logic based
ontologies[15].

However, as with most interesting logics, the reasoning services which are crit-
ical for the development and sometimes the deployment of ontologies have very
bad worst case complexity. For example, consistency checking for SHOIN , the
DL underlying OWL is NEXPTIME complete. While modern reasoners (such
as FaCT++, KAON2, and Pellet) employ an increasingly sophisticated array
of optimizations, it is still not particularly difficult to stymie them. When the
reasoners seem, somewhat randomly, to never halt while performing reasoning
services, users often feel lost, frustrated, and helpless. Most do not have the
training or the expertise to delve into their reasoner to figure out what is going
3 http://lists.w3.org/Archives/Public/public-owl-dev/2007JanMar/0047.html
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on, even if the source code is available. Consequently, users try to (1) Remove
portions of the ontology that are thought to be the causes of reasoning perfor-
mance problems, or (2) contact reasoner implementors for a detailed explanation.
However, precisely because of the lack of expertise, attempts to remove axioms
in order to reduce the computational load often results in efforts a little better
than blind guesses. Though experts such as reasoner implementors have general
ideas of the type of axioms that can create performance problems, general guide-
lines may not help solving specific problems. In addition, it can be difficult to
identify performance problems due to hard-to-handle logical axioms when there
are many easy-to-handle axioms. The lack of tool support and theory in this
area is the primary reason that even experts find it a significant challenge to
explain the performance of their reasoner against certain ontologies.

The situation in ontology engineering with regard to performance tuning is
similar to that with regard to debugging a few years ago. In the past two years or
so the state of the tooling for finding and explaining semantic errors in ontology
has gone from nothing to respectable [12][11]. The availability of robust services
and tools for debugging ontologies allows ontology engineers to build larger,
more correct, more interesting ontologies in less time and with less expertise
and tedium. Today, performance analysis of ontologies against reasoners is a
painful, tedious, manual affair even to identify a bottleneck as a test case for
reasoner implementors.

In this paper we take some first steps toward supporting the performance
analysis of description logic knowledge bases. In particular, we focus on under-
standing the effort in testing the satisfiabilty of a class using a tableau reasoner.
In the following sections, we relate our research to similarities in other disciplines,
describe our prototype tool and case studies on how the tool relays the internal
states of a reasoner to help a user understand the performance bottleneck.

2 Background and Challenges

We draw the analogy between software engineering and ontology engineering.
Both ontologies and software source code are human-written computational ar-
tifacts meant to be processed by other programs for a purpose. Source code is to
be compiled and run in an environment, and ontologies are to be processed by
reasoners for entailments. Software profiling involves collecting various perfor-
mance statistics during program execution which are correlated with statements
in the source code. Similarly, we envision an ontology profiler gathering perfor-
mance related statistics during reasoning and correlating them with axioms (or
terms) in the ontology. We emphasize that we are not interested in profiling the
reasoners as programs themselves. We are treating the reasoners as fixed enti-
ties, and instrument their behaviors with regards to different parts of an ontology
to identify sources of performance bottlenecks. Of course, just as sometimes one
has to look to the behavior of the compiler, interpreter, query engine, or runtime
libraries to actually solve a performance problem, sometimes the problem can
only reasonably be solved by investigating and modifying the reasoner. However,
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even in these cases, it can be very helpful if the users can effectively isolate the
aspects of their ontology that is causing problems.

In [10], Jeffery identifies four challenges to building successful program mon-
itors (e.g., for debugging or performance analysis), all of which apply to the
ontology engineering case:

1. Volume of Data: The ontologies themselves can be large and complex
enough to require significant tool support even in their asserted form. The
search space for reasoning services for expressive description logics is very
large (as indicated by their EXPTIME to NEXPTIME worst case com-
plexity). Tableau reasoners build finite graph representations (completion
graphs) of models of the given ontologies, and this graph and its construc-
tion trace can be large and unwieldy. The challenge here is first deciding
what are the most useful data, and subsequently, how to allow users explore
and correlated the two data sources to gain insight.

2. Dimensionality of Data: As the inference services proceed, data from trac-
ing the reasoners’ high-level behavior and the resultant completion graphs
are generated. At each time point during the execution, the state of the
reasoner can be described by the (incompleted) completion graph. The com-
pletion graph does not only contain structural information, but also sets of
categorical information as labels. Additional flags (e.g. blocked, cached) des-
ignating techniques used by the reasoner also add dimensions to the data.
Finally, statistics for raw performance measures should also be collected as
performance overviews.

3. Intrusion: Software monitors typically must alter the program and the en-
vironment in order to gather useful data. Instead of providing execution-time
monitoring, which may impose unrealistic slowdown, we employ less inva-
sive “postmortem” methods to allow users to examine the performance data
after the execution.

4. Access: Many aspects of the execution of inference services are not usually
accessible. Users typically use reasoners as an oracle. They ask whether a
certain concept is satisfiable, and the reasoner returns “yes” or “no”. There
is little information available for the user to review. Exposing the graphs
and the internals of the reasoners’ operations is not a straight-forward task,
however. The non-deterministic nature of the tableau algorithms and its
optimizations may cause the inference services to behave differently when
given the same ontology. How to present these differences and still keep a
coherent picture is a challenge. While reasoners can handle many ontologies
within a reasonable time frame, sometimes the inference services never seem
to end, or all available memory is consumed. When this happens, often no
information can be given back to the user. To be able to handle such cases,
even at a preliminary level, is key.

In program optimization, we can distinguish between two basic sorts: macro
or “algorithmic” or “design” improvements, and micro or “code level” improve-
ments. Changing data structures for one better suited to the problem is an
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example of the former. Loop unrolling is an example of the latter. Obviously,
there is a continuum between these poles, and some activities — such as tuning
the garbage collector — do not obviously fit. It’s not clear, exactly, whether
these categories provide a useful framework for thinking about ontologies. There
are certainly analogous practices to micro-optimization: sometimes twiddling
the axioms can have a large beneficial effect on performance. Many in-reasoner
optimization involve transforming axioms into a better form for the reasoner.
Similarly, the practice of approximating an ontology originally developed in a
more expressive logic in a less expressive logic (see Dolce Lite4 which is an OWL
DL version of a full first order logic based ontology) or approximating difficult
constructs (such as approximating nominals as new disjoint atomic classes) can
be seen as something of a macro-optimization, at least, as an attempt to macro-
optimize. Obviously, as with software engineering, it is important to understand
what is lost with such changes. Not all optimizations preserve the exact behavior
of the original program. Similarly, some changes to ontologies will not respect
the intended representation of the domain and even lose significant entailments.
Such are the compromises users face.

One significant point of potential disanalogy is that reasoning techniques
vary widely. While tableau algorithms are still the dominant form of reasoning
with OWL DL, other techniques such as reduction to disjunctive datalog[8] and
reduction to first order logic, such as Hootlet5and MSPASS[9], are significantly
different in most details. Not only is there different information to extract, but
the behavior model, thus how to fruitfully interpret the extracted data, is very
different. The techniques we explore in this paper were developed for a specific
reasoner, Pellet, and thus for a fairly bog-standard tableau reasoner. This obvi-
ously is limited, but is not unreasonably specific. Even if the techniques would
not translate directly to other tableau reasoners, it is important to determine
whether such services are useful to ontologists, and how.

3 Tool Design and Implementation

Tweezers is a prototype utility that instruments Pellet and allows users to gain
access to the inference results and performance statistics. The main interface
(See Figure 1) enables users to view and sort a set of performance statistics.
We collect the following statistics: Sat. Time: The CPU time it takes to per-
form satisfiability check for a particular class. #Clashes: The number of clashes
encountered when performing the satisfiability check. This measures how many
dead ends reasoner run into before finding a completion. Model Depth: The depth
of the completion graph. Model Size: The size of the completion graph. Explored
Size: Number of nodes generated but were not in the final completion graph
(due to clashes and backjumping). This is a rough measure of “wasted effort”.
Upon loading an ontology from the Web, Tweezers automatically performs sat-

4 http://www.loa-cnr.it/DOLCE.html
5 Hoolet: http://owl.man.ac.uk/hoolet/
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isfiability checks on all classes. The default sat check behavior can be modified
via several controls, described below.

Fig. 1. On the left side is the Tweezers main interface. The statistics are sorted by
Sat. Time. A cross-view of the statistics for a class is shown at the bottom. The right
side shows the interface for completion graph inspection. The graph is visualized on
the left. The right side contains the visualization control, and labels for the currently
selected node (highlighted in orange)

For convenience, users can execute several runs in batch fashion with one
click. Statistics from multiple runs let users better deal with nondeterminism via
averages. Viewing of statistics from different runs is managed by tabs. Double-
clicking a row gives users a view of the statistics of that class across all the runs.
Double-clicking again here launches the completion graph viewer (See Figure
1). The completion graph is shown as a network in force-directed layout, using
the open-source Prefuse library [4]. Each node represents an individual, and
each edge represents a set of roles between the two individuals. The nodes are
numbered in the order that they are generated. In a panel at the bottom right
part of the interface, the labels of the currently selected individual are displayed
in the order that they are added. Nodes with special attributes are additionally
decorated: the first node is outlined in green, and blocked nodes are shown with
a blocked symbol in red.

By clicking on “All Models”, users can perform a run where Pellet finds all
possible representations of models for each class. Satisfiability checks typically
stop when a first model is found. Here we force Pellet to find all models. These
models are represented by a set of completion graphs, and these graphs are avail-
able for inspection using the same interactive visualization interface. Interested
users can explore these completion graphs to look for qualitative differences.

With each run, users can optionally set a timeout limit (default is 5 seconds)
for how much time Pellet is allowed to spend performing satisfiability check for
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each class. When the timeout is reached, Pellet stops processing that class, and
moves onto the next, no statistics are kept for the aborted class.

The statistics and completion graphs are normally kept in-memory for faster
access. The size of completion graphs for classes in some ontologies can be in
the order of thousands, consuming all memory so that Tweezers fails. To better
make use of main memory, Tweezers has a “Safe Mode” that allows the storage
of collected data to be made on hard drives. In this mode, maximum amount
of memory is ensured for the satisfiability check for every single class. When
encountering an out-of-memory error in normal mode, Tweezer will attempt to
recover and restart the process in Safe Mode.

Tweezers is built as part of pre-released version of Pellet 1.4 (no OWL 1.1
support). Currently it provides instrumentation for ontologies of expressivity
SHIN (D) (OWL-DL without nominals). However, this is mostly a problem
simplification decision, not a technical barrier. This Pellet is bundled with a
version of Swoop, which contains useful utilities such as ontology modularization
that can additionally help isolate performance problems. These tools can be
found here 6

4 Case Studies

We describe a series of case studies on how our prototype tool help identifying
the causes of performance bottleneck. There are four case studies, presented here
roughly in the chronological order that they were studied.

4.1 Galen, Round 1

One common “difficult” OWL ontology is the version of the Galen7 medical
ontology translated from the original GRAIL formalism by Ian Horrocks, and
has over 2700 classes, 400 ObjectProperties, and 300 GCIs. It is in the DL
expressivity SHF . This is an interesting initial case because of the large number
of GCIs. We expected to see a lot of variation in the performance statistics when
we run satisfiability checks in Pellet. We were interested in finding out if there
are consistently “difficult” classes, and if we could fine-tune it.

We initially ran Tweezers on Galen a few dozen times, and ascertained that
the class GreaterTrochanter consistently has the worst statistics of all classes.
The average completion graph size for GreaterTrochanter was well over 600,
by far the largest in this ontology. We traced a few of the graphs manually,
attempting to see if there are axioms that can be added or removed to reduce
the complexity of the completion graph. In the graphs, we found that more than
6 http://www.mindswap.org/∼tw7/work/profiling/code/index.html
7 Galen: http://www.cs.man.ac.uk/∼horrocks/OWL/Ontologies/galen.owl. It is

important to note that this is a translation of a very old version of Galen
(sometimes called “not-Galen”). The current production version of Galen is or-
ders of magnitude larger and is not classifiable by any existing reasoner, see:
http://www.co-ode.org/galen/index.php
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one individual is both a Femur and a Tibia, which seemed counterintuitive. We
thought that by making Femur and Tibia disjoint, we may be able to reduce
the completion graph size and make Pellet work less hard. After consulting the
on-line version of Gray’s Anatomy 8 to make sure our intuitions is not wrong
(after all, we are not the domain experts!). The classes Femur, Tibia, Fibula,
Humerus, Ulna, and Radius are direct subclasses of LongBone. We made an
additional version of Galen, where these LongBones are all pairwise disjoint so
we can compare the effects of disjoint axioms applied in a surgical setting as
opposed to a more general setting.

We then ran Tweezers 5 times on each of the 3 versions of Galen: original,
Femur-Tibia-Disjoint, and LongBones-Disjoint. The averages of the statistics are
summarized in Table 1.

Table 1. Averages of performance statistics over 5 runs each for the 3 versions of Galen.
The left columns shows the statistics for performing satisfiability check for the class
GreaterTrochanter, while the right columns show the same statistics for performing
satisfiability for all classes in the ontology.

Scope GreaterTrochanter Ontology

Statistics Time Clashes Depth Size Explored Time Clashes Explored

Original 1.3 118.6 12.8 689.2 5814.4 5.94 322.2 7892.2
F+T Disjoint 0.66 95 9.8 396.6 3184 3 297.4 5528.8
LB Disjoint 0.15 16 8 373.4 601.8 2.78 224.8 2756.8

Satisfiability check time for the GreaterTrochanter improved roughly 50%.
The same statistic also improved roughly 50% for the all-class case. The num-
ber of clashes for GreaterTrochanter is reduced by 45%. The completion graph
size is also reduced from routhly 700 to about 400. In LongBones-Disjoint, the
satisfiability check time for GreaterTrochanter further improved so that it is an
oder of magnitude faster than the original. The number of explored nodes for
GreaterTrochanter is greatly reduced (from 3184 in the Femur-Tibia-Disjoint to
601). However, the other improvements are too minor to be considered of any
importance.

4.2 Causal Chains

Modeling causal relationships for diseases and diagnosis is common in biomedical
ontologies. The Galen team in Manchester has devised a small test ontology to
see if a particular way of modeling can capture the intended knowledge and
allow reasonable performance in reasoners for real applications. This Causal-
Chain ontology contains 43 classes, 4 object properties (2 pairs of inverses: has,
is had by, causes, is caused by), and has the DL expressivity ALCI. The told
class structure has two main branches. The first branch is a simple hierarchy

8 Gray’s Anatomy: http://education.yahoo.com/reference/gray/
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of Conditions. The second branch contains the class Situation and its list of
children (See Figure 2). Each child of Situation is named Having X, where X
corresponds to a mirror class X Condition in the first branch. Generally, every
Having X have the following axioms:

1. Having X ≡ ∃has.X Condition
2. Having X v ∃causes.Having Y
3. Having X v ∃Situation

Fig. 2. On the left side, an abbreviated version of the class tree is shown. On the right
hand side, detailed class definition for Having A as is shown in Swoop.

where Y stands for the letter that occurs one after X (See Figure 2). The im-
plication is that every Having X causes a Having Y, and this causal chain goes
from Having A to Having J. We were told that FaCT++ was able to classify
this ontology in seconds, but Pellet could not classify this ontology. We theo-
rized that the causal chain was the problem – since the ontology is very small,
and the structure is regular and simple. We would like to make causal chains of
different length, and see which ones Pellet can process. Using Swoop, we modu-
larized the ontology (as described in [3]) along the causal chain, once for every
Having X class. We end up with 10 modules of increasing complexity, from Hav-
ing J to Having A. Pellet can classify all module except the ones for Having B
and Having A. Completion graphs revealed that there were many unexpected
disjunctions in the nodes’ labels. Moreover, Pellet debugging message showed
that the completion rules for domain axioms are being fired. The only problem
was that there were no domain axioms in the ontology.

We later determined that the GCIs in this ontology are handled by a reasoner
optimization called “role absorption”. The GCIs 4. and 5. are transformed into
the domain axioms 6. and 7. by role absorption [14]:

4. ∃has.Condition X v Situation (from 1. and 3.)
5. ∃has.Condition X v ∃causes.Having Y (from 1. and 2.)
6. domain(has, Situation t ¬∃has.Condition X (from 4.)
7. domain(has, ∃causes.Having Y t ¬∃has.Condition X (from 5.)
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If there are n such domain restrictions, every node that had a has succes-
sor would be labeled with at most n complex domain types, where each type
contained a disjunct of 2 class expressions, for a total of 2n possible choices.
From Having A to Having J, there were 19 such GCIs (Having J causes noth-
ing), thus we had a search space of cardinality 219 for every node that generated
a has relation. To make matters worse, the presence of inverse properties means
that more sophisticated blocking techniques needed to be used in the tableau to
ensure the correctness of the inferences [7]. As a result, the size of completion
graphs are usually much larger, and inference takes longer.

We found two possible ways to tune it for better performance. The first
one is to remove the inverse assertions. The second one is to change the the ≡
assertions from the Having X classes to v. Both of these techniques reduced
the classification time for Pellet from impossible to within seconds. The first
technique lowers the expressivity of the language used so that the reasoner could
block more easily, reducing the amount of work. In the second case, removal of
the equivalence axioms means we get rid of the GCIs, and no role absorption
would occur. Though both solutions makes the ontology manageable, they also
come with a price. In the first case, if inverses were the central focus of modeling,
then it would be unwise to remove them. On the other hand, if the intended use
of the ontology is for instantiation (determining what classes individuals are
members of), then the second method would not be appropriate. This decision
should be made by the ontology creators and application developers.

4.3 LKIF-Core Ontology

The LKIF is a suite of OWL ontologies that describe the legal domain.9 A
merged version of a snapshot of the ontology from late Feburary 2007 is used in
this discussion, and can be found here 10. The ontology is not large, containing
206 classes, 1 data type property, 106 object properties, and no individuals. It
has the DL expressivity SHIN (D). There are 75 inverse properties. Neither
FaCT++ (called from Protégé 4.27) nor Pellet was able to classify this ontology
in reasonable amount of time. Desires to find out more about the behaviors
of the reasoner with respect to the ontology was expressed in the Pellet user
mailing list. In particular, the user would like to know whether there is a specific
construct or pattern that has made the ontology unprocessable11.

In the Causal-Chain case study, it was easy to isolate the potential problems
by manually identifying the difficult part of the ontology because of its size and
regularity in structure. We then modularized the ontology to examine the ef-
fects of the length of causal chain on performance. However, it is not so obvious
here. Manually inspecting the asserted axioms showed that GCIs formed through
equivalence axioms and subclass axioms in a hierarchy (as in the Causal-Chain
case) were abundant. Class definitions also use the inverse properties frequently.

9 LKIF-Core ontology web page: http://www.estrellaproject.org/lkif-core
10 http://www.mindswap.org/∼tw7/work/profiling/others/lkif-all-correct.owl
11 http://lists.owldl.com/pipermail/pellet-users/2007-February/001257.html
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We expected that much of the ontology will be problematic for the reasoner.
However, blindly modularize the ontology did not seem a fruitful method. We
used the timeout feature of Tweezers to restrict the time Pellet can use to per-
form satisfiability check for a particular class. The timeout was originally set
to be 5 seconds. As expected, majority of the classes could not be checked for
satisfiability within the timeout(151 out of 206). Of the ones that could be, 17
were unsatisfiable. The satisfiable classes all had fairly small models, and took no
more than 0.1 second to perform satisfiability check, and were without clashes.
In this case, very little useful information was available to guide us to further
isolate the problems. By extending the timeout limit to 10 seconds, we were
able to see Tweezers process 90 classes (including the 17 unsatisfiabile ones). Of
these classes, many have completion graphs of the same size and depth, indi-
cating that they may be mostly the same, sharing a common, large structure.
However, the size of such graphs (over 3000+) made detailed manual inspections
prohibitive. Instead, we suggested to the users to remove non-critical equivalence
axioms and make less important properties not inverse, symmetric, or inverse
functional. Pellet could process the ontology within seconds once these property
attributes were removed.

There are a few reasons why this was an interesting case study. One, the
situation that users get frustrated with reasoner’s performance with respect to
their own ontologies was consistent with our expectation, especially when the
use of reasoners is not part of the ontology development cycle (as suggested by
the existence of many unsatisfiable classes). Secondly, more sophisticated users
of the OWL language desire to gain more understanding of their own ontology
when this situation arises, and only finds (1) the current tools are not easily
amendable to exposing the internal states and histories, and (2) when an ontol-
ogy is unprocessable as a whole, the users get nearly no information about their
ontology (even though part of it is processable). Our prototype tool attempted
to give users more feedback, though in this particular case, only generic advice
could be rendered without systematic examination and experimentation of large
number of “difficult” classes.

4.4 Galen, Round 2

The above case studies showed that having inverse properties in even small,
but expressive ontologies can have far-reaching performance consequences. We
returned to the ontology Galen and performed an experiment by adding an in-
verse property. There are two main object property branches in Galen. One is
rooted at DomainAttribute, while the other is rooted at InverseDomainAttribute.
These two branches mirror each other, and each branch has about 200 properties.
Though the name suggests that the properties in one branch would be inverses
of the corresponding ones in the other, no actual inverse assertions exist. For
our experiment, we selected one pair of corresponding object properties to be
inverses of each other: ActsOn, isActedOnBy . These two properties were used
in definitions of 61 classes. When looking at the inferred hierarchy of Galen,
there were a total of 385 classes effected by these definitions because they were
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descendants of the 61 classes. Pellet was not able to classify this ontology. Run-
ning Tweezers with a 5 second timeout showed that satisfiability of 900+ of the
2700+ concepts could not be checked. Our friend GreaterTrochanter belonged
to that difficult group. In the original Galen, only GreaterTrochanter had any
notable size in its completion graph. In this single-inverse version, many classes
have completion graphs of sizes over 10k. Even the simple classes that did not
seem to have any connection to the inverse properties would have sizes in the
order of thousands!

5 Discussion

These case studies exhibited all the facets of the research problem. First, there is
a real need from the user community. Instrumenting the reasoner and allow users
to view the performance statistics is one way to help them identify the problem
which, aside from helping them cope with the particular problem, can increase
their overall satisfaction with the process. We received very positive feedback
from users about our analyses and they were very vocal about obtaining access
to Tweezers. It seems that even if modifications to their ontologies would not
be acceptable, simply knowing what the problem qualitatively improves their
experience. It is shown in the first case study that when the ontology can be
classified by a reasoner, it is possible to fine-tune the ontology via adding or
removal of axioms to improve the reasoning performance. We showed that a
strategically placed disjoint axiom can greatly reduce the performance time for
both a specific concept and the entire ontology. The intuition is that the disjoint
axioms restricts the reasoner from adding labels, thus limiting the size of the
completion graph, and possibly pruning search space. However, it is possible
that too many disjoint statements may cause performance problems, as this may
restrict the reasoner too much, and the overhead for many backtracks catches
up . We conjecture that there is a “right amount” of disjoints that can optimize
the performance for many ontologies. We are currently investigating methods of
determining such “right amount”.

In small ontologies with very regular structures such as the Causal-Chain
ontology, manual inspection of the axioms was often enough to have an inkling
of what might be causing the problem. Modularizing the ontology proved to
be an effective method to simplify the problem and identify the bottleneck. In
cases like LKIF with 5-second timeouts, the classes were either so easy that
their performance statistics are of no insight, or that the classes were so difficult
that no useful information can be collected, finding what classes with respect to
which to modularize is a challenge. The LKIF case study also revealed that large
completion graphs are prohibitive for both the tools to display and humans to
digest. More automated methods should be used to look for points of interest in
the completion graph.

The final 3 case studies showed that the presence of inverse properties can
drastically change reasoner performance. They revealed how inefficiently inverses
are handled. Currently, Pellet chooses a strategy for performing inference services
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by the expressivity of the ontology. For example, when an ontology contains
inverse properties, a more sophisticated blocking technique is employed, and
this technique is used for all inference tasks for the entire ontology. However,
it may be the case that there is a large part of the ontology that does not
use inverses (such as in our last case study), and can use a simpler blocking
technique without compromising the correctness of the inference. This may be
achieved by investigating the possibility of performing modularization for each
class prior to satisfiability check and use the expressivity of such module instead
of the ontology, or having the reasoner dynamically change the strategy while
reasoning.

6 Related Work

To our knowledge there is has been no previous work on providing ontologists
with tools which attempt to explain the reasoning time characteristics of de-
scription logic reasoners in any detail. Reasoners like FaCT++ and Pellet can
be configured to provide some feedback during the reasoning process, but this
is generally limited to fairly coarse grain timing information (for example, such
as would be presented in a progress bar). Sometimes, there is some correlation
presented between time and certainly terms (e.g., a reasoner may print start
and end points for testing the satisfiability of a particular class), but never to
particular axioms or to particular internal behaviors (e.g., backtracking). Also,
reasoners tend to be rather unforgiving if there is a memory or timeout problem
with an ontology. For example, if a single subsumption test runs out of memory,
FaCT++, Pellet, and Racer simply abort the entire classification process (some-
times aborting the the entire session and requiring a restart of the reasoner).
As users and developers of reasoners and ontology development environments
for several years, we were surprised that it had not occurred to us that this ex-
tremely user-hostile behavior was not a good idea. This all-or-nothing approach
is deeply embedded in the culture even though, in principle, many of the sub-
sumptions are easy to compute and are accessible, albeit in a clumsy way, from
the various APIs. Just lifting this draconian behavior is useful, although raises
interface challenges on how to present the resource failures.

Ontology development environments such as Swoop and Protégé provide a
syntactic analysis of ontologies designed to help users gain some sense of the over-
all complexity of an ontology. These analysis include statistics on the number
of classes, properties, and individuals and the number of GCIs, inverse proper-
ties and the like. They also attempt to classify more precisely the description
logic the ontology falls into. This feature first appeared in Swoop and was in-
spired by the “species validation” service defined by the OWL specifications.
The species of OWL — Lite, DL, Full — were intended to give a very course
grained idea of the “difficulty” of reasoning with an ontology, all other things
being equal. this difficulty is based on the worst case complexity and general
experience with reasoning with the corresponding logics. Given that the species’
worst case complexity range from EXPTIME to undecidable, and that there is
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considerable expressive overlap between the species, it is clear that they are not
a particularly helpful guide to expected performance, though they have been
used as such. Recently, there has been a renaissance in the area of description
logics with tractable (by some measuers) worst case complexity. These logics in
some sense promise better scalability (and their novel inference techniques have
cracked ontologies that current tableau reasoners fail to handle), although this
can vary significantly in particular cases. They also involve significant expres-
sivity compromises. The idea of “light weight species” has considerable appeal
to users as shown by the enthusiasm generated by the OWL 1.1 “tractable frag-
ments” document.12

There is a growing literature on description logic reasoner benchmarking,
though the majority is embedded in discussions of optimizations or new rea-
soning techniques, e.g.[6]. There is a line which extends from the modal logic
community’s attempt to generate “hard modal formulae”[5]. Unfortunately, re-
lating these benchmarks to analysis of difficult ontologies (for certain reasoners)
has not been systematically attempted.

Model and proof extraction and presentation has a number of uses from edu-
cation[1] to debugging missing entailments[13]. One of our long term goals is to
explore support for model oriented ontology development [2]. One reason to focus
on the use of model/tableau visualization and exploration in a profiling context
is that we do not need domain experts in order to perform useful experiments.
Subjects can be set tasks such as “improve the performance of satisfiability
testing while minimizing the loss of subumptions” and model generation and
exploration tools without them needing to understand the subject matter of the
ontology. In this way, we believe that performance tuning has methodological
value independently of its substantive value to users.

7 Future Work and Conclusions

Through our case studies, we have demonstrated the difficulty of ontology per-
formance profiling, and how our prototype implementation can help. However,
these case studies also revealed the limits of our current tool. Most glaringly, tools
and users get easily overwhelmed by multiple, very large completion graphs. The
development of more sensible user interfaces, coupled with a more complete cov-
erage of reasoner behaviors (such as axiom-level profiling and completion graph
construction history) for exploration and analysis of completion graphs is crit-
ical. We also need to study how experts use these tools so the process can be
more automated, and more explanations can be given to the average OWL users.
Indeed, if the performance is to be scary, it should not be scary because of the
unknown.

12 http://www.w3.org/Submission/2006/SUBM-owl11-tractable-20061219/
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