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Abstract. For the development of Semantic Web technology, researchers and 
developers in the Semantic Web community need to focus on the areas in which 
human reasoning is particularly difficult. Two studies in this paper demonstrate 
that people are predisposed to use class-inclusion labels for inductive judg-
ments. This tendency appears to stem from a general characteristic of human 
reasoning – using heuristics to solve problems. The inference engines and inter-
face designs that incorporate human reasoning need to integrate this general 
characteristic underlying human induction. 

1 Introduction 

In order for the Semantic Web to remain technologically viable, it must either drasti-
cally expand human abilities or create totally new experiences in our lives. Many in-
ventions have achieved this: the automobile expanded people’s mobility; TV elevated 
the scope of our experience; E-mail facilitated the ability to communicate. Unless 
Semantic Web can change human experience and ability in a fundamental manner, its 
technological innovation will be short-lived. 

How can the Semantic Web change our lives? One goal of the Semantic Web is to 
aide complex inferential tasks such as medical diagnosis, business decisions, or in-
vestment predictions by making the vast amount of data now available on the World 
Wide Web useful for the machine [1]. However, to develop successful inference 
agents, semantic web researchers need to know exactly what is needed to supplant 
human inferential behavior – how people make inferential reasoning, when their rea-
soning becomes irrational and fallible, and how a computer program can help fulfill 
our shortcomings.  

The question therefore boils down to the following: are the existing approaches, 
such as RDF, RDFS, OWL, and other inferential agents, sound enough in principle to 
support human reasoning abilities? If not, what is needed for the evolution of the Se-
mantic Web? Study in human cognitive psychology can make an important contribu-
tion in this regard. 

In this paper, I will describe two cognitive studies conducted in my laboratory and 
illustrate how people (college students) solve simple inferential questions using onto-
logical “tags.”  In so doing, I aim to provide insight into the development of inferen-



tial agents in the Semantic Web environment from the perspective of human cognitive 
psychology. 

In a nutshell, the present studies show two things: one, that people display a sig-
nificant tendency to use class-inclusion labels to make inferential judgments, and two, 
that they separate category labels from property labels and make “rule-like” reason-
ing. This disproportional reliance on categorical class labels appears to stem from two 
sources: (a) human reasoning is intertwined with language, thus linguistic categories, 
such as count nouns and adjectives, influence the way people make inductive reason-
ing; (b) because of processing constraints, people often apply simple heuristics, such 
as using class-inclusion labels, to solve inferential problems [2]. The inference en-
gines and interface designs that incorporate human reasoning need to take advantage 
of these fundamental characteristics of human reasoning in order to be successful. 
Specifically, it may be useful to separate ontological status of class-information (ap-
plicable for count nouns) and property information (applicable for adjectives). Fur-
thermore, applications of Semantic Web technology should focus on the areas in 
which human reasoning is particularly vulnerable.  

 

 
Fig. 1. Two examples of a stimulus frame in the inference task in Studies 1 and 2. In one group 
of trials, both sample and test stimuli had the same labels (“monek” and “monek”). In the other 
group of trials, sample and test stimuli had different labels (“plaple” and “monek”). Subjects 
were asked to predict the hidden value of body parts in test stimuli on the basis of sample stim-
uli shown right next to the test stimuli. In this manner, this experiment assessed the extent to 
which the attribute value of one stimulus (sample stimulus) is projected to other stimuli. 

2 Study 1 

Consider a simple reasoning experiment, in which subjects are shown schematic pic-
tures of cartoon insects side by side and are asked to predict a hidden value of an at-
tribute of a test insect on the basis of a sample insect (Fig. 1). One selection is consis-
tent with the attribute value shown in the sample insect (e.g., long horns in Fig. 1a). 
The other selection is inconsistent with the feature shown in the sample insect (e.g., 
short horns in Fig. 1a). 



Above each insect, an arbitrary tag (“monek” or “plaple”) is placed. The main 
question is how the probability of selecting the consistent attribute (selecting the long 
horns in Fig. 1a) would change as the ontological status of the arbitrary tags is modi-
fied. As subjects rely on the labels to make judgments, the probability of making a 
consistent choice would go up or down sharply depending on whether sample and test 
stimuli have the same tags (Fig. 1a; “monek” vs. “monek”) or different tags (Fig. 1b; 
“plaple” vs. “monek”). For example, many subjects would select long horns in Fig. 1a 
(consistent choice), but few subjects would choose short horns in Fig. 1b. The ques-
tion is how people’s inferential behavior would change when these arbitrary tags 
carry different ontological information, class inclusion information or property pos-
session information. 

In four independent experiments, a group of undergraduate students received the 
same stimuli and answered the same inferential questions (60 trials in total). How-
ever, the instructions they received were modified slightly so that these arbitrary la-
bels (“monek” and “plale”) represented different ontological information. In a class-
tag condition, the instructions characterized the two arbitrary labels (‘monek” and 
“plaple”) as representing two types that these insects belong to. In a property-tag con-
dition, the instructions characterized the same arbitrary labels as representing shapes 
of wings hidden underneath the insect’s body. In a pictorial class-tag condition and a 
pictorial property-tag condition, the labels were removed and replaced with pictorial 
symbols (Fig. 2).  

 

 
Fig. 2. Two examples of the stimulus frames used in the pictorial class-tag and pictorial prop-
erty-tag conditions in Study 1. Note that the verbal labels (“monek” and “plaple”) in Fig. 1 are 
replaced with pictorial signs in these conditions. 

In this manner, the class-tag condition characterized these labels with class inclu-
sion information, and the property-tag condition characterized these labels with 
“property” information. In both pictorial class-tag and pictorial property-tag condi-
tions, the two verbal labels (“monek” and “plaple”) were replaced with pictorial signs. 
These pictorial signs were described as representing two “types” of insects (pictorial 
class-tag condition) or different shapes of insects (pictorial property-tag condition). 
Except for these points, all subjects received the same stimuli and answered the same 
inferential questions. 



The probability of selecting attributes consistent with sample stimuli would go up 
or down drastically depending on whether sample and test stimuli have the same or 
different labels (Fig. 1 and Fig. 3). However, this shift would depend on the ontologi-
cal information that these tags represent. For example, when the tags represent names 
of the “types” that these insects belong to, the probability of selecting attribute values 
consistent with the sample stimuli (i.e., “consistent choice”) would go up. On the 
other hand, when the same tags represent a property that these insects have, the prob-
ability of consistent choice would go down. In this manner, this study helped identify 
the extent to which different ontological tags (class information vs. property informa-
tion; verbal labels vs. pictorial signs) would influence the inference of unknown at-
tributes [3].  

 
Fig. 3. A hypothetical response pattern. This response pattern shows a heavy reliance on tags. 
As the sample and test stimuli have the same tags (see Fig. 1a), the proportion of making con-
sistent choices is high. However, when the sample and test stimuli have different labels, the 
proportion of making consistent choices goes down sharply. The difference between the two 
proportions is defined as a “polarity score.” 

In Study 1, I present the results from four experiments, and show a clear indication 
that people tend to rely on verbal labels representing class-inclusion information to 
make inferential projections. Study 2 further shows that this bias is present even when 
“class” division does not have proper meaning, suggesting that using class-inclusion 
labels is likely to be a default strategy for human reasoning. 



2.1 Method 

2.1.1 Participants 
A total of 175 undergraduate students participated in this study (the class-tag condi-
tion, n=49; the pictorial class-tag condition, n=51; the property-tag condition, n=41; 
the pictorial property-tag condition, n=34). The participants were recruited from the 
Psychology Subject Pool administered at Texas A&M University.  

 
Fig. 4. Five sets of prototypes used to produce test stimuli. One hundred test stimuli 
were produced by swapping two feature dimensions of two corresponding categories, 
“monek” and “plaple.” See also Table 1. 

2.1.2 Materials 
The stimulus materials were schematic illustrations of cartoon insects produced from 
five sets (A, B, C, D, and E) of prototypes (Fig. 4).  Each stimulus was composed of a 
combination of five feature dimensions with binary values (horns=long/short, 
head=round/angular, torso=dotted/striped, legs=8 legs/4 legs, tail=short/long), along 
with category labels (‘monek’/’plaple’) (Table 1). The depiction of these features var-
ied across the five stimulus sets, while they maintained abstract commonalties. For 
example, the monek prototypes in the five sets all had long horns, round heads, dotted 
torsos, 8 legs and short tails, while the exact appearance of these components was dif-
ferent across the sets. 



Individual trials consisted of pairs of a sample stimulus and a test stimulus (Fig. 1). 
We created 100 test stimuli from the five sets, A, B, C, D, and E (20 stimuli from 
each set – Fig. 4).  These test stimuli were produced systematically by exchanging in-
dividual components of the two prototypes. All test stimuli had 2 features consistent 
with the prototype of one category and 2 features consistent with the prototype of the 
other category, and 1 feature was masked for an inference question (Table 1). One 
version of the stimulus materials was produced from prototype sets A, B, and C. The 
other version was produced from prototype sets A, D, and E (Fig. 4). The sample 
stimuli, which were shown right next to the test stimuli, were the two prototype stim-
uli of set A. 

Table 1. The structure of the test stimuli used in Studies 1 and 2. (1, 0)=Horns(long horns, 
short horns), Head(round, angular), Body(dotted, striped), Legs(8 legs, 4 legs), Tail(short, 
long), Labels(monek, plaple). ?/1 refers to the dimension queried in each trial, and the “consis-
tent response” for that question. For example, given test stimulus M1, the horns dimension was 
queried, and the selection with 1 (long horns) is defined as a “consistent response.” 

Horns Head Body Legs Tail Labels

M1 ?/1 1 1 0 0 1

M2 1 1 0 0 ?/1 1

M3 1 0 0 ?/1 1 1

M4 0 0 ?/1 1 1 1

M5 0 ?/1 1 1 0 1

M0 (sample 
stimulus) 1 1 1 1 1 1

P1 ?/0 0 0 1 1 0

P2 0 0 1 1 ?/0 0

P3 0 1 1 ?/0 0 0
P4 1 1 ?/0 0 0 0

P5 1 ?/0 0 0 1 0

P0 (sample 
stimulus) 0 0 0 0 0 0

 

2.1.3 Procedure 
For each trial, participants were shown a pair of sample and test stimuli on a computer 
screen, and were instructed to select one of two feature values for the body part in 
question. Every participant received 30 test stimuli twice (60 trials in total). In one 



case, a test stimulus was paired with the prototype of the corresponding category (i.e., 
match condition) (Fig. 1a). In the other case, the same test stimulus was paired with 
the prototype of the other category (i.e., mismatch condition) (Fig. 1b). For example, 
stimulus M1 in Table 1 was shown twice, once with the sample stimulus M0 (this is 
called a matched trial because M1 and M0 had the same label ‘monek’) and once with 
the sample stimulus P0 (this is called a mismatched trial because M1 and P0 had dif-
ferent labels, ‘monek’ and ‘plaple’). Each participant received a total of 60 trials (20 
test stimuli each from sets A, B, and C or sets A, D, and E – Fig. 4). 

Participants indicated their responses by clicking one of the two designated but-
tons. The order of presenting stimuli was determined randomly for each participant.  

2.2 Results and discussion 

Each condition was treated as an independent study (no participants participated in 
these experiments more than once). Because these experiments were given in separate 
semesters, the four experiments were compared by a meta-analytic procedure [4]. 
Specifically, we compared the effect size r of the polarity score (Fig. 3) obtained in 
each experiment with the following equations: 

Effect size r =
dft

t
+2

2

 
(1) 

Fisher Zr ⎟
⎠
⎞

⎜
⎝
⎛
−
+

=
r
r

e 1
1log

2
1

 
(2) 

3
1

3
1

21

21

−
+

−

−

NN

ZZ rr  
(3) 

where N1 and N2 represent the number of subjects in each of two experiments, and (3) 
is distributed as Z.  

Fig. 5 and Table 2 summarize the major results from Study 1. As Fig. 5 shows, the 
impact of matched/mismatched labels was considerably larger when the labels were 
characterized with class inclusion information (class-tag condition). When sample and 
test stimuli had the same tags, the proportion of making consistent responses was 
high. When sample and test stimuli had different tags, the proportion of making con-
sistent responses declined sharply. This tendency decreased substantially when the 
same labels were characterized with property information. It is also evident that ver-
bal labels, but not pictorial signs, were more important for inferential projections. 
When the verbal tags were replaced with pictorial signs, the polarity score declined 
substantially. 



Fig. 5. A summary of Study 1. The error bars represent two standard error units ob-
tained in each condition. 

Table 2. Main results from Study 1.  

class tag property tag
class tag (pictorial 

symbols)

property tag (pictorial 

symbols)
effect size (r) 0.79 0.50 0.52 0.36

Fisher Z 1.08 0.55 0.58 0.38

Comparing Fisher Z's in all pairs (p-value)

class tag property tag
class tag (pictorial 

symbols)
property tag (pictorial 

symbols)
class tag -

property tag 0.01 -
class tag (pictorial 

symbols)
0.01 0.14 -

property tag (pictorial 
symbols)

0.001 0.71 0.89 -

 



 
Overall, the effect size comparing the impact of matched and mismatched tags was 

particularly large in the class-tag conditions as compared to the other conditions; 
Z’s>2.37, p’s<0.01 (Table 2), suggesting a clear inclination to use category labels for 
the prediction of body parts. 

3 Study 2 

Study 1 indicates a strong preference for using class-inclusion tags for inferential pre-
dictions. It is likely that using these categorical labels is a default strategy for inferen-
tial reasoning, and Study 2 tested this idea. In Study 2, the instructions in one condi-
tion (a random-class tag condition) explicitly stated that the two “classes” (“monek” 
and “plaple”) of these cartoon insects were determined randomly by a coin toss, and 
there was no particular meaning attached to these types. This condition was compared 
to other property-tag conditions, in which the same arbitrary tags were characterized 
as representing names of diseases that these insects carry, or names of the islands on 
which these insects live. If using class-inclusion tags is a default reasoning strategy, 
the polarity score obtained in the random-class tag condition should be still larger 
than those obtained in the other property-tag conditions. 

3.1 Method 

3.1.1 Participants 
A total of 164 undergraduate students participated in the experiment for course credit 
(random-class tag, n=57, property-tag (disease), n=49; property-tag (island), n=58). 

3.1.2 Materials and Procedure 
One version of the stimulus materials was produced from prototype sets A and B. The 
other version was produced from prototype sets A and C (Fig. 4). In total, each par-
ticipant received 40 test trials. In the random-class tag condition, the instructions 
specified the arbitrary tags representing two types of the insects that were determined 
randomly by a coin toss. In the other property-tag conditions (disease and island), the 
instructions stated that these tags represent names of diseases or islands that these 
imaginary insects carry or live on. Except for this single point, the three conditions 
were identical in their procedures, materials, and designs. Individual participants par-
ticipated in one of the 3 experiments, and no participants participated in the experi-
ment more than once.  

3.2 Results and Discussion 

As in Study 1, each experiment was treated as an independent study (no participants 
participated in these experiments more than once), and these studies were examined 



with a meta-analytic procedure by comparing the effect sizes of the polarity scores 
obtained in each experiment. 

Fig. 6 and Table 3 summarize the major results from Study 2. The most important 
result in Study 2 is that the polarity score obtained in the random-class tag condition 
is still substantially higher than those obtained in the other property-tag conditions, 
suggesting that using class-inclusion labels is somewhat automatic for many partici-
pants.  

As Fig. 6 shows, the impact of matched/mismatched labels was considerably larger 
when the labels were characterized with class inclusion information. When sample 
and test stimuli had the same tags, the proportion of making consistent responses was 
high. When sample and test stimuli had different tags, the proportion of making con-
sistent responses declined sharply. This tendency decreased substantially when the 
same labels were characterized with property information.  

 

 
Fig. 6. A summary of Study 2. The error bars represent standard errors obtained in each condi-
tion. 

Overall, the effect size obtained in the random-class tag condition was significantly 
larger than that in the property tag (island) condition; Z=1.70, p<0.05. The effect size 
difference between the random-class tag condition and the property-tag (disease) con-
dition was also substantial; Z=1.61, p=0.053 (Table 3), suggesting a sizable advantage 
for a random-class tag over the two property tags. Taken together, these results con-
firm that there is a strong tendency to use class-labels to make predictions. 
 



Table 3. Main results from Study 2. 

class tag 

(random type)

property tag 

(disease)

property tag 

(island)

effect size (r) 0.74 0.55 0.54

Fisher Z 0.95 0.62 0.61

Comparing Fisher Z in every pair (p-value)

class tag 
(random type)

property tag 
(disease)

property tag 
(island)

class tag (random type) -

property tag (disease) 0.05 -

property tag (island) 0.04 0.48
 

4 General Discussion 

We manipulated the meanings associated with arbitrary labels attached to imaginary 
insects, and examined how the manipulation would influence the way the subjects 
predict the attributes of these insects. In both Study 1 and Study 2, the college stu-
dents displayed a strong tendency to use class inclusion labels to make their inferen-
tial judgments. This tendency was reduced significantly when the verbal tags were re-
placed with pictorial signs, or when the tags represented various kinds of property 
information, such as the disease, location, or the shape of wings that these imaginary 
insects carry, live, or possess.  

Why does human reasoning heavily rely on verbal labels representing class inclu-
sion information? One source of this bias seems to come from the need to maintain 
cognitive economy [5]. One of the most compelling findings in the cognitive psychol-
ogy of inductive inference is that people make a predictive inference on the basis of 
the categorical information that is immediately recognizable [6]-[10]. By arranging 
concepts categorically, we treat individual objects as a group and deal with the char-
acteristics of the group as a whole, rather than individual objects separately. 
“Grouped” representation can expedite many cognitive tasks, and help overcome the 
processing limitations of the human brain [11]. As a result, we often gloss over indi-



vidual differences and draw erroneous conclusions about individuals (e.g., stereotyp-
ing).  

Another important source of the over-reliance on class inclusion labels is likely to 
stem from the influence of language. Category labels generally correspond to count 
nouns (e.g., animals, dogs, cats, or apples). They are subject to linguistic constraints 
to a larger degree than adjectives, because count nouns vastly outnumber adjectives in 
linguistic communications. This may be an important reason why noun labels are fun-
damentally different from attribute labels and affect our inductive inference in a sig-
nificant manner [12]. For example, noun labels can be used as a metaphor (“my job is 
a jail”), or to help activate a particular aspect of a concept (“the pen is mightier than 
the sword”). When noun labels are used metaphorically (“my job is a jail”), the label 
jail does not represent a collection of individual instances of “jail.” Rather, the label 
accentuates one aspect of the concept (e.g., being captive). In this manner, the mean-
ing associated with noun labels is determined in the context of communication, and 
categorical noun labels can flexibly influence our inferential behavior. 

Implications for Semantic Web research. What does the current finding tell us in 
terms of the development of the Semantic Web? There are several important implica-
tions. First, the developers and researchers in the Semantic Web community may be 
better off by focusing on the areas in which human reasoning is particularly vulner-
able. Our strong inclination to use class inclusion labels comes from the need to proc-
ess information quickly in light of our processing constraints. This bias occurs par-
ticularly when processing information is mentally cumbersome. Unlike computers, 
the human brain is far limited in its processing capacity. When reasoning involves 
many options and conditions to weigh, we rely on simple heuristics, such as the rec-
ognizablility and representativeness of a selection.  

The application of the Semantic Web can be especially important in fields such as 
product selection, medical diagnosis, and human resources management. For exam-
ple, in selecting a home insurance policy, we need to process a large amount of regu-
lations, conditions, criteria and so on. Insurance companies often deliberately fill their 
policies with many unrecognizable options, making it difficult for lay people to grasp 
necessary information. Selecting appropriate drugs also require extensive processing 
of the information related to their ingredients, possible side effects, and effectiveness. 
The Semantic Web can help people make rational decisions by helping reduce proc-
essing overload. A similar application can be developed in many areas of product se-
lection, such as the selection of infant foods, automobiles, schools, and houses. 
Clearly, machines appear to do much better than humans in these areas.  

Another potentially promising area of Semantic Web application can be medical 
diagnosis. According to recent statistics, 1 in every 47 diabetic patients (5.7 million 
US citizens) were misdiagnosed.1 Misdiagnosis occurs primarily due to the failure to 
take a variety of patient information into account, such as his/her family history, life-
style, age and racial marker. With the advent of genome research, individuals’ ge-
nomic information will also become available to clinicians in the future, and doctors 
will be increasingly fraught with individuated information. By developing inference 

                                                            
1  This statistics is taken from The National Women’s Health Information Center, U. S. De-

partment of Health and Human Services and reported at 
   http://www.wrongdiagnosis.com/intro/notdiagcommon.htm. 



agents tailored for specific patents, medical diagnosis can be facilitated significantly 
by using the Semantic Web technology [13] [14].  

Human resources management can be another promising area. Selecting appropri-
ate employees, and providing sound services to individual employees (e.g., health in-
surance and retirement benefits, and employee training) requires a vast amount of in-
dividuated information. This process can be facilitated by utilizing semantic web 
agents that are appropriately geared to analyze the information about individual em-
ployees.  

Finally, the present study indicates that OWL researchers and developers may need 
to consider vocabularies that are aligned with linguistic classes, such as count nouns, 
adjectives and verbs. Likewise, algorithms for ontology matching may also need to 
integrate these linguistic classes. Many agents in ontology matching measure the se-
mantic similarity between ontologies by a weighted sum of individuated “similarity 
factors” [15] [16] [17]. These linguistic classes can be a dominant factor in determin-
ing the degree of matching between ontologies. Because human knowledge is primar-
ily expressed by language, our conceptual activities (e.g., inferential reasoning) are 
also subject to the structure of language [18] [19]. Researchers in the Semantic Web 
community may need to pay attention to this relationship.  
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